Solve for x
x=\frac{\sqrt{265}-11}{8}\approx 0.659852575
x=\frac{-\sqrt{265}-11}{8}\approx -3.409852575
Graph
Share
Copied to clipboard
x^{2}+2x-3+\frac{3}{4}x=-\frac{3}{4}
Add \frac{3}{4}x to both sides.
x^{2}+\frac{11}{4}x-3=-\frac{3}{4}
Combine 2x and \frac{3}{4}x to get \frac{11}{4}x.
x^{2}+\frac{11}{4}x-3+\frac{3}{4}=0
Add \frac{3}{4} to both sides.
x^{2}+\frac{11}{4}x-\frac{9}{4}=0
Add -3 and \frac{3}{4} to get -\frac{9}{4}.
x=\frac{-\frac{11}{4}±\sqrt{\left(\frac{11}{4}\right)^{2}-4\left(-\frac{9}{4}\right)}}{2}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 1 for a, \frac{11}{4} for b, and -\frac{9}{4} for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-\frac{11}{4}±\sqrt{\frac{121}{16}-4\left(-\frac{9}{4}\right)}}{2}
Square \frac{11}{4} by squaring both the numerator and the denominator of the fraction.
x=\frac{-\frac{11}{4}±\sqrt{\frac{121}{16}+9}}{2}
Multiply -4 times -\frac{9}{4}.
x=\frac{-\frac{11}{4}±\sqrt{\frac{265}{16}}}{2}
Add \frac{121}{16} to 9.
x=\frac{-\frac{11}{4}±\frac{\sqrt{265}}{4}}{2}
Take the square root of \frac{265}{16}.
x=\frac{\sqrt{265}-11}{2\times 4}
Now solve the equation x=\frac{-\frac{11}{4}±\frac{\sqrt{265}}{4}}{2} when ± is plus. Add -\frac{11}{4} to \frac{\sqrt{265}}{4}.
x=\frac{\sqrt{265}-11}{8}
Divide \frac{-11+\sqrt{265}}{4} by 2.
x=\frac{-\sqrt{265}-11}{2\times 4}
Now solve the equation x=\frac{-\frac{11}{4}±\frac{\sqrt{265}}{4}}{2} when ± is minus. Subtract \frac{\sqrt{265}}{4} from -\frac{11}{4}.
x=\frac{-\sqrt{265}-11}{8}
Divide \frac{-11-\sqrt{265}}{4} by 2.
x=\frac{\sqrt{265}-11}{8} x=\frac{-\sqrt{265}-11}{8}
The equation is now solved.
x^{2}+2x-3+\frac{3}{4}x=-\frac{3}{4}
Add \frac{3}{4}x to both sides.
x^{2}+\frac{11}{4}x-3=-\frac{3}{4}
Combine 2x and \frac{3}{4}x to get \frac{11}{4}x.
x^{2}+\frac{11}{4}x=-\frac{3}{4}+3
Add 3 to both sides.
x^{2}+\frac{11}{4}x=\frac{9}{4}
Add -\frac{3}{4} and 3 to get \frac{9}{4}.
x^{2}+\frac{11}{4}x+\left(\frac{11}{8}\right)^{2}=\frac{9}{4}+\left(\frac{11}{8}\right)^{2}
Divide \frac{11}{4}, the coefficient of the x term, by 2 to get \frac{11}{8}. Then add the square of \frac{11}{8} to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}+\frac{11}{4}x+\frac{121}{64}=\frac{9}{4}+\frac{121}{64}
Square \frac{11}{8} by squaring both the numerator and the denominator of the fraction.
x^{2}+\frac{11}{4}x+\frac{121}{64}=\frac{265}{64}
Add \frac{9}{4} to \frac{121}{64} by finding a common denominator and adding the numerators. Then reduce the fraction to lowest terms if possible.
\left(x+\frac{11}{8}\right)^{2}=\frac{265}{64}
Factor x^{2}+\frac{11}{4}x+\frac{121}{64}. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x+\frac{11}{8}\right)^{2}}=\sqrt{\frac{265}{64}}
Take the square root of both sides of the equation.
x+\frac{11}{8}=\frac{\sqrt{265}}{8} x+\frac{11}{8}=-\frac{\sqrt{265}}{8}
Simplify.
x=\frac{\sqrt{265}-11}{8} x=\frac{-\sqrt{265}-11}{8}
Subtract \frac{11}{8} from both sides of the equation.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}