Solve for a (complex solution)
\left\{\begin{matrix}\\a=\frac{x}{6}\text{, }&\text{unconditionally}\\a\in \mathrm{C}\text{, }&x=-8\end{matrix}\right.
Solve for a
\left\{\begin{matrix}\\a=\frac{x}{6}\text{, }&\text{unconditionally}\\a\in \mathrm{R}\text{, }&x=-8\end{matrix}\right.
Solve for x
x=6a
x=-8
Graph
Share
Copied to clipboard
x^{2}+8x-6ax=48a
Use the distributive property to multiply 2x by 4-3a.
x^{2}+8x-6ax-48a=0
Subtract 48a from both sides.
8x-6ax-48a=-x^{2}
Subtract x^{2} from both sides. Anything subtracted from zero gives its negation.
-6ax-48a=-x^{2}-8x
Subtract 8x from both sides.
\left(-6x-48\right)a=-x^{2}-8x
Combine all terms containing a.
\frac{\left(-6x-48\right)a}{-6x-48}=-\frac{x\left(x+8\right)}{-6x-48}
Divide both sides by -6x-48.
a=-\frac{x\left(x+8\right)}{-6x-48}
Dividing by -6x-48 undoes the multiplication by -6x-48.
a=\frac{x}{6}
Divide -x\left(8+x\right) by -6x-48.
x^{2}+8x-6ax=48a
Use the distributive property to multiply 2x by 4-3a.
x^{2}+8x-6ax-48a=0
Subtract 48a from both sides.
8x-6ax-48a=-x^{2}
Subtract x^{2} from both sides. Anything subtracted from zero gives its negation.
-6ax-48a=-x^{2}-8x
Subtract 8x from both sides.
\left(-6x-48\right)a=-x^{2}-8x
Combine all terms containing a.
\frac{\left(-6x-48\right)a}{-6x-48}=-\frac{x\left(x+8\right)}{-6x-48}
Divide both sides by -6x-48.
a=-\frac{x\left(x+8\right)}{-6x-48}
Dividing by -6x-48 undoes the multiplication by -6x-48.
a=\frac{x}{6}
Divide -x\left(8+x\right) by -6x-48.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}