Solve for x
x = -\frac{7}{2} = -3\frac{1}{2} = -3.5
x=4
Graph
Share
Copied to clipboard
x^{2}+2x+28-3x^{2}=x
Subtract 3x^{2} from both sides.
-2x^{2}+2x+28=x
Combine x^{2} and -3x^{2} to get -2x^{2}.
-2x^{2}+2x+28-x=0
Subtract x from both sides.
-2x^{2}+x+28=0
Combine 2x and -x to get x.
a+b=1 ab=-2\times 28=-56
To solve the equation, factor the left hand side by grouping. First, left hand side needs to be rewritten as -2x^{2}+ax+bx+28. To find a and b, set up a system to be solved.
-1,56 -2,28 -4,14 -7,8
Since ab is negative, a and b have the opposite signs. Since a+b is positive, the positive number has greater absolute value than the negative. List all such integer pairs that give product -56.
-1+56=55 -2+28=26 -4+14=10 -7+8=1
Calculate the sum for each pair.
a=8 b=-7
The solution is the pair that gives sum 1.
\left(-2x^{2}+8x\right)+\left(-7x+28\right)
Rewrite -2x^{2}+x+28 as \left(-2x^{2}+8x\right)+\left(-7x+28\right).
2x\left(-x+4\right)+7\left(-x+4\right)
Factor out 2x in the first and 7 in the second group.
\left(-x+4\right)\left(2x+7\right)
Factor out common term -x+4 by using distributive property.
x=4 x=-\frac{7}{2}
To find equation solutions, solve -x+4=0 and 2x+7=0.
x^{2}+2x+28-3x^{2}=x
Subtract 3x^{2} from both sides.
-2x^{2}+2x+28=x
Combine x^{2} and -3x^{2} to get -2x^{2}.
-2x^{2}+2x+28-x=0
Subtract x from both sides.
-2x^{2}+x+28=0
Combine 2x and -x to get x.
x=\frac{-1±\sqrt{1^{2}-4\left(-2\right)\times 28}}{2\left(-2\right)}
This equation is in standard form: ax^{2}+bx+c=0. Substitute -2 for a, 1 for b, and 28 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-1±\sqrt{1-4\left(-2\right)\times 28}}{2\left(-2\right)}
Square 1.
x=\frac{-1±\sqrt{1+8\times 28}}{2\left(-2\right)}
Multiply -4 times -2.
x=\frac{-1±\sqrt{1+224}}{2\left(-2\right)}
Multiply 8 times 28.
x=\frac{-1±\sqrt{225}}{2\left(-2\right)}
Add 1 to 224.
x=\frac{-1±15}{2\left(-2\right)}
Take the square root of 225.
x=\frac{-1±15}{-4}
Multiply 2 times -2.
x=\frac{14}{-4}
Now solve the equation x=\frac{-1±15}{-4} when ± is plus. Add -1 to 15.
x=-\frac{7}{2}
Reduce the fraction \frac{14}{-4} to lowest terms by extracting and canceling out 2.
x=-\frac{16}{-4}
Now solve the equation x=\frac{-1±15}{-4} when ± is minus. Subtract 15 from -1.
x=4
Divide -16 by -4.
x=-\frac{7}{2} x=4
The equation is now solved.
x^{2}+2x+28-3x^{2}=x
Subtract 3x^{2} from both sides.
-2x^{2}+2x+28=x
Combine x^{2} and -3x^{2} to get -2x^{2}.
-2x^{2}+2x+28-x=0
Subtract x from both sides.
-2x^{2}+x+28=0
Combine 2x and -x to get x.
-2x^{2}+x=-28
Subtract 28 from both sides. Anything subtracted from zero gives its negation.
\frac{-2x^{2}+x}{-2}=-\frac{28}{-2}
Divide both sides by -2.
x^{2}+\frac{1}{-2}x=-\frac{28}{-2}
Dividing by -2 undoes the multiplication by -2.
x^{2}-\frac{1}{2}x=-\frac{28}{-2}
Divide 1 by -2.
x^{2}-\frac{1}{2}x=14
Divide -28 by -2.
x^{2}-\frac{1}{2}x+\left(-\frac{1}{4}\right)^{2}=14+\left(-\frac{1}{4}\right)^{2}
Divide -\frac{1}{2}, the coefficient of the x term, by 2 to get -\frac{1}{4}. Then add the square of -\frac{1}{4} to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}-\frac{1}{2}x+\frac{1}{16}=14+\frac{1}{16}
Square -\frac{1}{4} by squaring both the numerator and the denominator of the fraction.
x^{2}-\frac{1}{2}x+\frac{1}{16}=\frac{225}{16}
Add 14 to \frac{1}{16}.
\left(x-\frac{1}{4}\right)^{2}=\frac{225}{16}
Factor x^{2}-\frac{1}{2}x+\frac{1}{16}. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x-\frac{1}{4}\right)^{2}}=\sqrt{\frac{225}{16}}
Take the square root of both sides of the equation.
x-\frac{1}{4}=\frac{15}{4} x-\frac{1}{4}=-\frac{15}{4}
Simplify.
x=4 x=-\frac{7}{2}
Add \frac{1}{4} to both sides of the equation.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}