Skip to main content
Solve for x (complex solution)
Tick mark Image
Solve for x
Tick mark Image
Graph

Similar Problems from Web Search

Share

x^{2}+2x+1=15
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
x^{2}+2x+1-15=15-15
Subtract 15 from both sides of the equation.
x^{2}+2x+1-15=0
Subtracting 15 from itself leaves 0.
x^{2}+2x-14=0
Subtract 15 from 1.
x=\frac{-2±\sqrt{2^{2}-4\left(-14\right)}}{2}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 1 for a, 2 for b, and -14 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-2±\sqrt{4-4\left(-14\right)}}{2}
Square 2.
x=\frac{-2±\sqrt{4+56}}{2}
Multiply -4 times -14.
x=\frac{-2±\sqrt{60}}{2}
Add 4 to 56.
x=\frac{-2±2\sqrt{15}}{2}
Take the square root of 60.
x=\frac{2\sqrt{15}-2}{2}
Now solve the equation x=\frac{-2±2\sqrt{15}}{2} when ± is plus. Add -2 to 2\sqrt{15}.
x=\sqrt{15}-1
Divide -2+2\sqrt{15} by 2.
x=\frac{-2\sqrt{15}-2}{2}
Now solve the equation x=\frac{-2±2\sqrt{15}}{2} when ± is minus. Subtract 2\sqrt{15} from -2.
x=-\sqrt{15}-1
Divide -2-2\sqrt{15} by 2.
x=\sqrt{15}-1 x=-\sqrt{15}-1
The equation is now solved.
\left(x+1\right)^{2}=15
Factor x^{2}+2x+1. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x+1\right)^{2}}=\sqrt{15}
Take the square root of both sides of the equation.
x+1=\sqrt{15} x+1=-\sqrt{15}
Simplify.
x=\sqrt{15}-1 x=-\sqrt{15}-1
Subtract 1 from both sides of the equation.
x^{2}+2x+1=15
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
x^{2}+2x+1-15=15-15
Subtract 15 from both sides of the equation.
x^{2}+2x+1-15=0
Subtracting 15 from itself leaves 0.
x^{2}+2x-14=0
Subtract 15 from 1.
x=\frac{-2±\sqrt{2^{2}-4\left(-14\right)}}{2}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 1 for a, 2 for b, and -14 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-2±\sqrt{4-4\left(-14\right)}}{2}
Square 2.
x=\frac{-2±\sqrt{4+56}}{2}
Multiply -4 times -14.
x=\frac{-2±\sqrt{60}}{2}
Add 4 to 56.
x=\frac{-2±2\sqrt{15}}{2}
Take the square root of 60.
x=\frac{2\sqrt{15}-2}{2}
Now solve the equation x=\frac{-2±2\sqrt{15}}{2} when ± is plus. Add -2 to 2\sqrt{15}.
x=\sqrt{15}-1
Divide -2+2\sqrt{15} by 2.
x=\frac{-2\sqrt{15}-2}{2}
Now solve the equation x=\frac{-2±2\sqrt{15}}{2} when ± is minus. Subtract 2\sqrt{15} from -2.
x=-\sqrt{15}-1
Divide -2-2\sqrt{15} by 2.
x=\sqrt{15}-1 x=-\sqrt{15}-1
The equation is now solved.
\left(x+1\right)^{2}=15
Factor x^{2}+2x+1. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x+1\right)^{2}}=\sqrt{15}
Take the square root of both sides of the equation.
x+1=\sqrt{15} x+1=-\sqrt{15}
Simplify.
x=\sqrt{15}-1 x=-\sqrt{15}-1
Subtract 1 from both sides of the equation.