Solve for b (complex solution)
\left\{\begin{matrix}\\b=\frac{x-2a}{2}\text{, }&\text{unconditionally}\\b\in \mathrm{C}\text{, }&x=a\end{matrix}\right.
Solve for b
\left\{\begin{matrix}\\b=\frac{x-2a}{2}\text{, }&\text{unconditionally}\\b\in \mathrm{R}\text{, }&x=a\end{matrix}\right.
Solve for a
a=x
a=\frac{x-2b}{2}
Graph
Share
Copied to clipboard
x^{2}+2a^{2}=2bx+3ax-2ab
Use the distributive property to multiply 2b+3a by x.
2bx+3ax-2ab=x^{2}+2a^{2}
Swap sides so that all variable terms are on the left hand side.
2bx-2ab=x^{2}+2a^{2}-3ax
Subtract 3ax from both sides.
\left(2x-2a\right)b=x^{2}+2a^{2}-3ax
Combine all terms containing b.
\left(2x-2a\right)b=x^{2}-3ax+2a^{2}
The equation is in standard form.
\frac{\left(2x-2a\right)b}{2x-2a}=\frac{\left(x-a\right)\left(x-2a\right)}{2x-2a}
Divide both sides by 2x-2a.
b=\frac{\left(x-a\right)\left(x-2a\right)}{2x-2a}
Dividing by 2x-2a undoes the multiplication by 2x-2a.
b=\frac{x}{2}-a
Divide \left(x-2a\right)\left(x-a\right) by 2x-2a.
x^{2}+2a^{2}=2bx+3ax-2ab
Use the distributive property to multiply 2b+3a by x.
2bx+3ax-2ab=x^{2}+2a^{2}
Swap sides so that all variable terms are on the left hand side.
2bx-2ab=x^{2}+2a^{2}-3ax
Subtract 3ax from both sides.
\left(2x-2a\right)b=x^{2}+2a^{2}-3ax
Combine all terms containing b.
\left(2x-2a\right)b=x^{2}-3ax+2a^{2}
The equation is in standard form.
\frac{\left(2x-2a\right)b}{2x-2a}=\frac{\left(x-a\right)\left(x-2a\right)}{2x-2a}
Divide both sides by 2x-2a.
b=\frac{\left(x-a\right)\left(x-2a\right)}{2x-2a}
Dividing by 2x-2a undoes the multiplication by 2x-2a.
b=\frac{x}{2}-a
Divide \left(x-2a\right)\left(x-a\right) by 2x-2a.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}