Solve for b (complex solution)
\left\{\begin{matrix}b=-\frac{\left(x-a\right)\left(x-2a\right)}{3x+4a+2}\text{, }&x\neq \frac{-4a-2}{3}\\b\in \mathrm{C}\text{, }&\left(x=-\frac{2}{5}\text{ and }a=-\frac{1}{5}\right)\text{ or }\left(x=-\frac{2}{7}\text{ and }a=-\frac{2}{7}\right)\end{matrix}\right.
Solve for b
\left\{\begin{matrix}b=-\frac{\left(x-a\right)\left(x-2a\right)}{3x+4a+2}\text{, }&x\neq \frac{-4a-2}{3}\\b\in \mathrm{R}\text{, }&\left(x=-\frac{2}{5}\text{ and }a=-\frac{1}{5}\right)\text{ or }\left(x=-\frac{2}{7}\text{ and }a=-\frac{2}{7}\right)\end{matrix}\right.
Solve for a (complex solution)
a=\frac{\sqrt{x^{2}-48bx+16b^{2}-16b}}{4}+\frac{3x}{4}-b
a=-\frac{\sqrt{x^{2}-48bx+16b^{2}-16b}}{4}+\frac{3x}{4}-b
Solve for a
a=\frac{\sqrt{x^{2}-48bx+16b^{2}-16b}}{4}+\frac{3x}{4}-b
a=-\frac{\sqrt{x^{2}-48bx+16b^{2}-16b}}{4}+\frac{3x}{4}-b\text{, }\left(b>-\frac{1}{35}\text{ and }b<0\right)\text{ or }x\geq 4\sqrt{35b^{2}+b}+24b\text{ or }x\leq -4\sqrt{35b^{2}+b}+24b\text{ or }\left(b\geq -\frac{1}{35}\text{ and }b\leq 0\right)
Graph
Share
Copied to clipboard
x^{2}+2a^{2}+2b=3xa-3xb-4ab
Use the distributive property to multiply 3x by a-b.
x^{2}+2a^{2}+2b+3xb=3xa-4ab
Add 3xb to both sides.
x^{2}+2a^{2}+2b+3xb+4ab=3xa
Add 4ab to both sides.
2a^{2}+2b+3xb+4ab=3xa-x^{2}
Subtract x^{2} from both sides.
2b+3xb+4ab=3xa-x^{2}-2a^{2}
Subtract 2a^{2} from both sides.
\left(2+3x+4a\right)b=3xa-x^{2}-2a^{2}
Combine all terms containing b.
\left(3x+4a+2\right)b=-x^{2}+3ax-2a^{2}
The equation is in standard form.
\frac{\left(3x+4a+2\right)b}{3x+4a+2}=\frac{\left(a-x\right)\left(x-2a\right)}{3x+4a+2}
Divide both sides by 2+3x+4a.
b=\frac{\left(a-x\right)\left(x-2a\right)}{3x+4a+2}
Dividing by 2+3x+4a undoes the multiplication by 2+3x+4a.
x^{2}+2a^{2}+2b=3xa-3xb-4ab
Use the distributive property to multiply 3x by a-b.
x^{2}+2a^{2}+2b+3xb=3xa-4ab
Add 3xb to both sides.
x^{2}+2a^{2}+2b+3xb+4ab=3xa
Add 4ab to both sides.
2a^{2}+2b+3xb+4ab=3xa-x^{2}
Subtract x^{2} from both sides.
2b+3xb+4ab=3xa-x^{2}-2a^{2}
Subtract 2a^{2} from both sides.
\left(2+3x+4a\right)b=3xa-x^{2}-2a^{2}
Combine all terms containing b.
\left(3x+4a+2\right)b=-x^{2}+3ax-2a^{2}
The equation is in standard form.
\frac{\left(3x+4a+2\right)b}{3x+4a+2}=\frac{\left(a-x\right)\left(x-2a\right)}{3x+4a+2}
Divide both sides by 2+3x+4a.
b=\frac{\left(a-x\right)\left(x-2a\right)}{3x+4a+2}
Dividing by 2+3x+4a undoes the multiplication by 2+3x+4a.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}