Solve for b (complex solution)
\left\{\begin{matrix}b=-ax-\frac{c}{x}\text{, }&a\neq 0\text{ and }x\neq 0\\b\in \mathrm{C}\text{, }&c=0\text{ and }x=0\text{ and }a\neq 0\end{matrix}\right.
Solve for a
\left\{\begin{matrix}a=-\frac{bx+c}{x^{2}}\text{, }&\left(c\neq 0\text{ or }b\neq 0\right)\text{ and }\left(b=0\text{ or }x\neq -\frac{c}{b}\right)\text{ and }x\neq 0\text{ and }c\neq -bx\\a\neq 0\text{, }&c=0\text{ and }x=0\end{matrix}\right.
Solve for b
\left\{\begin{matrix}b=-ax-\frac{c}{x}\text{, }&a\neq 0\text{ and }x\neq 0\\b\in \mathrm{R}\text{, }&c=0\text{ and }x=0\text{ and }a\neq 0\end{matrix}\right.
Graph
Quiz
Linear Equation
5 problems similar to:
x ^ { 2 } + 2 \frac { b } { 2 a } x + \frac { c } { a } = 0
Share
Copied to clipboard
2ax^{2}+2bx+2c=0
Multiply both sides of the equation by 2a, the least common multiple of 2a,a.
2bx+2c=-2ax^{2}
Subtract 2ax^{2} from both sides. Anything subtracted from zero gives its negation.
2bx=-2ax^{2}-2c
Subtract 2c from both sides.
2xb=-2ax^{2}-2c
The equation is in standard form.
\frac{2xb}{2x}=\frac{-2ax^{2}-2c}{2x}
Divide both sides by 2x.
b=\frac{-2ax^{2}-2c}{2x}
Dividing by 2x undoes the multiplication by 2x.
b=-ax-\frac{c}{x}
Divide -2ax^{2}-2c by 2x.
2ax^{2}+2bx+2c=0
Variable a cannot be equal to 0 since division by zero is not defined. Multiply both sides of the equation by 2a, the least common multiple of 2a,a.
2ax^{2}+2c=-2bx
Subtract 2bx from both sides. Anything subtracted from zero gives its negation.
2ax^{2}=-2bx-2c
Subtract 2c from both sides.
2x^{2}a=-2bx-2c
The equation is in standard form.
\frac{2x^{2}a}{2x^{2}}=\frac{-2bx-2c}{2x^{2}}
Divide both sides by 2x^{2}.
a=\frac{-2bx-2c}{2x^{2}}
Dividing by 2x^{2} undoes the multiplication by 2x^{2}.
a=-\frac{bx+c}{x^{2}}
Divide -2bx-2c by 2x^{2}.
a=-\frac{bx+c}{x^{2}}\text{, }a\neq 0
Variable a cannot be equal to 0.
2ax^{2}+2bx+2c=0
Multiply both sides of the equation by 2a, the least common multiple of 2a,a.
2bx+2c=-2ax^{2}
Subtract 2ax^{2} from both sides. Anything subtracted from zero gives its negation.
2bx=-2ax^{2}-2c
Subtract 2c from both sides.
2xb=-2ax^{2}-2c
The equation is in standard form.
\frac{2xb}{2x}=\frac{-2ax^{2}-2c}{2x}
Divide both sides by 2x.
b=\frac{-2ax^{2}-2c}{2x}
Dividing by 2x undoes the multiplication by 2x.
b=-ax-\frac{c}{x}
Divide -2ax^{2}-2c by 2x.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}