Solve for x
x = \frac{\sqrt{78} + 8}{7} \approx 2.404537267
x=\frac{8-\sqrt{78}}{7}\approx -0.118822981
Graph
Share
Copied to clipboard
x^{2}+2=8x^{2}-16x
Use the distributive property to multiply 8x by x-2.
x^{2}+2-8x^{2}=-16x
Subtract 8x^{2} from both sides.
-7x^{2}+2=-16x
Combine x^{2} and -8x^{2} to get -7x^{2}.
-7x^{2}+2+16x=0
Add 16x to both sides.
-7x^{2}+16x+2=0
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
x=\frac{-16±\sqrt{16^{2}-4\left(-7\right)\times 2}}{2\left(-7\right)}
This equation is in standard form: ax^{2}+bx+c=0. Substitute -7 for a, 16 for b, and 2 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-16±\sqrt{256-4\left(-7\right)\times 2}}{2\left(-7\right)}
Square 16.
x=\frac{-16±\sqrt{256+28\times 2}}{2\left(-7\right)}
Multiply -4 times -7.
x=\frac{-16±\sqrt{256+56}}{2\left(-7\right)}
Multiply 28 times 2.
x=\frac{-16±\sqrt{312}}{2\left(-7\right)}
Add 256 to 56.
x=\frac{-16±2\sqrt{78}}{2\left(-7\right)}
Take the square root of 312.
x=\frac{-16±2\sqrt{78}}{-14}
Multiply 2 times -7.
x=\frac{2\sqrt{78}-16}{-14}
Now solve the equation x=\frac{-16±2\sqrt{78}}{-14} when ± is plus. Add -16 to 2\sqrt{78}.
x=\frac{8-\sqrt{78}}{7}
Divide -16+2\sqrt{78} by -14.
x=\frac{-2\sqrt{78}-16}{-14}
Now solve the equation x=\frac{-16±2\sqrt{78}}{-14} when ± is minus. Subtract 2\sqrt{78} from -16.
x=\frac{\sqrt{78}+8}{7}
Divide -16-2\sqrt{78} by -14.
x=\frac{8-\sqrt{78}}{7} x=\frac{\sqrt{78}+8}{7}
The equation is now solved.
x^{2}+2=8x^{2}-16x
Use the distributive property to multiply 8x by x-2.
x^{2}+2-8x^{2}=-16x
Subtract 8x^{2} from both sides.
-7x^{2}+2=-16x
Combine x^{2} and -8x^{2} to get -7x^{2}.
-7x^{2}+2+16x=0
Add 16x to both sides.
-7x^{2}+16x=-2
Subtract 2 from both sides. Anything subtracted from zero gives its negation.
\frac{-7x^{2}+16x}{-7}=-\frac{2}{-7}
Divide both sides by -7.
x^{2}+\frac{16}{-7}x=-\frac{2}{-7}
Dividing by -7 undoes the multiplication by -7.
x^{2}-\frac{16}{7}x=-\frac{2}{-7}
Divide 16 by -7.
x^{2}-\frac{16}{7}x=\frac{2}{7}
Divide -2 by -7.
x^{2}-\frac{16}{7}x+\left(-\frac{8}{7}\right)^{2}=\frac{2}{7}+\left(-\frac{8}{7}\right)^{2}
Divide -\frac{16}{7}, the coefficient of the x term, by 2 to get -\frac{8}{7}. Then add the square of -\frac{8}{7} to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}-\frac{16}{7}x+\frac{64}{49}=\frac{2}{7}+\frac{64}{49}
Square -\frac{8}{7} by squaring both the numerator and the denominator of the fraction.
x^{2}-\frac{16}{7}x+\frac{64}{49}=\frac{78}{49}
Add \frac{2}{7} to \frac{64}{49} by finding a common denominator and adding the numerators. Then reduce the fraction to lowest terms if possible.
\left(x-\frac{8}{7}\right)^{2}=\frac{78}{49}
Factor x^{2}-\frac{16}{7}x+\frac{64}{49}. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x-\frac{8}{7}\right)^{2}}=\sqrt{\frac{78}{49}}
Take the square root of both sides of the equation.
x-\frac{8}{7}=\frac{\sqrt{78}}{7} x-\frac{8}{7}=-\frac{\sqrt{78}}{7}
Simplify.
x=\frac{\sqrt{78}+8}{7} x=\frac{8-\sqrt{78}}{7}
Add \frac{8}{7} to both sides of the equation.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}