Solve for x
x = \frac{7 \sqrt{6} - 7}{5} \approx 2.02928564
x=\frac{-7\sqrt{6}-7}{5}\approx -4.82928564
Graph
Share
Copied to clipboard
20x^{2}+56x-196=0
Combine x^{2} and 19x^{2} to get 20x^{2}.
x=\frac{-56±\sqrt{56^{2}-4\times 20\left(-196\right)}}{2\times 20}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 20 for a, 56 for b, and -196 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-56±\sqrt{3136-4\times 20\left(-196\right)}}{2\times 20}
Square 56.
x=\frac{-56±\sqrt{3136-80\left(-196\right)}}{2\times 20}
Multiply -4 times 20.
x=\frac{-56±\sqrt{3136+15680}}{2\times 20}
Multiply -80 times -196.
x=\frac{-56±\sqrt{18816}}{2\times 20}
Add 3136 to 15680.
x=\frac{-56±56\sqrt{6}}{2\times 20}
Take the square root of 18816.
x=\frac{-56±56\sqrt{6}}{40}
Multiply 2 times 20.
x=\frac{56\sqrt{6}-56}{40}
Now solve the equation x=\frac{-56±56\sqrt{6}}{40} when ± is plus. Add -56 to 56\sqrt{6}.
x=\frac{7\sqrt{6}-7}{5}
Divide -56+56\sqrt{6} by 40.
x=\frac{-56\sqrt{6}-56}{40}
Now solve the equation x=\frac{-56±56\sqrt{6}}{40} when ± is minus. Subtract 56\sqrt{6} from -56.
x=\frac{-7\sqrt{6}-7}{5}
Divide -56-56\sqrt{6} by 40.
x=\frac{7\sqrt{6}-7}{5} x=\frac{-7\sqrt{6}-7}{5}
The equation is now solved.
20x^{2}+56x-196=0
Combine x^{2} and 19x^{2} to get 20x^{2}.
20x^{2}+56x=196
Add 196 to both sides. Anything plus zero gives itself.
\frac{20x^{2}+56x}{20}=\frac{196}{20}
Divide both sides by 20.
x^{2}+\frac{56}{20}x=\frac{196}{20}
Dividing by 20 undoes the multiplication by 20.
x^{2}+\frac{14}{5}x=\frac{196}{20}
Reduce the fraction \frac{56}{20} to lowest terms by extracting and canceling out 4.
x^{2}+\frac{14}{5}x=\frac{49}{5}
Reduce the fraction \frac{196}{20} to lowest terms by extracting and canceling out 4.
x^{2}+\frac{14}{5}x+\left(\frac{7}{5}\right)^{2}=\frac{49}{5}+\left(\frac{7}{5}\right)^{2}
Divide \frac{14}{5}, the coefficient of the x term, by 2 to get \frac{7}{5}. Then add the square of \frac{7}{5} to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}+\frac{14}{5}x+\frac{49}{25}=\frac{49}{5}+\frac{49}{25}
Square \frac{7}{5} by squaring both the numerator and the denominator of the fraction.
x^{2}+\frac{14}{5}x+\frac{49}{25}=\frac{294}{25}
Add \frac{49}{5} to \frac{49}{25} by finding a common denominator and adding the numerators. Then reduce the fraction to lowest terms if possible.
\left(x+\frac{7}{5}\right)^{2}=\frac{294}{25}
Factor x^{2}+\frac{14}{5}x+\frac{49}{25}. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x+\frac{7}{5}\right)^{2}}=\sqrt{\frac{294}{25}}
Take the square root of both sides of the equation.
x+\frac{7}{5}=\frac{7\sqrt{6}}{5} x+\frac{7}{5}=-\frac{7\sqrt{6}}{5}
Simplify.
x=\frac{7\sqrt{6}-7}{5} x=\frac{-7\sqrt{6}-7}{5}
Subtract \frac{7}{5} from both sides of the equation.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}