Skip to main content
Factor
Tick mark Image
Evaluate
Tick mark Image
Graph

Similar Problems from Web Search

Share

factor(16x^{2}-27x-20)
Combine x^{2} and 15x^{2} to get 16x^{2}.
16x^{2}-27x-20=0
Quadratic polynomial can be factored using the transformation ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right), where x_{1} and x_{2} are the solutions of the quadratic equation ax^{2}+bx+c=0.
x=\frac{-\left(-27\right)±\sqrt{\left(-27\right)^{2}-4\times 16\left(-20\right)}}{2\times 16}
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
x=\frac{-\left(-27\right)±\sqrt{729-4\times 16\left(-20\right)}}{2\times 16}
Square -27.
x=\frac{-\left(-27\right)±\sqrt{729-64\left(-20\right)}}{2\times 16}
Multiply -4 times 16.
x=\frac{-\left(-27\right)±\sqrt{729+1280}}{2\times 16}
Multiply -64 times -20.
x=\frac{-\left(-27\right)±\sqrt{2009}}{2\times 16}
Add 729 to 1280.
x=\frac{-\left(-27\right)±7\sqrt{41}}{2\times 16}
Take the square root of 2009.
x=\frac{27±7\sqrt{41}}{2\times 16}
The opposite of -27 is 27.
x=\frac{27±7\sqrt{41}}{32}
Multiply 2 times 16.
x=\frac{7\sqrt{41}+27}{32}
Now solve the equation x=\frac{27±7\sqrt{41}}{32} when ± is plus. Add 27 to 7\sqrt{41}.
x=\frac{27-7\sqrt{41}}{32}
Now solve the equation x=\frac{27±7\sqrt{41}}{32} when ± is minus. Subtract 7\sqrt{41} from 27.
16x^{2}-27x-20=16\left(x-\frac{7\sqrt{41}+27}{32}\right)\left(x-\frac{27-7\sqrt{41}}{32}\right)
Factor the original expression using ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right). Substitute \frac{27+7\sqrt{41}}{32} for x_{1} and \frac{27-7\sqrt{41}}{32} for x_{2}.
16x^{2}-27x-20
Combine x^{2} and 15x^{2} to get 16x^{2}.