Skip to main content
Solve for x (complex solution)
Tick mark Image
Solve for x
Tick mark Image
Graph

Similar Problems from Web Search

Share

x^{2}+14x-720=1
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
x^{2}+14x-720-1=1-1
Subtract 1 from both sides of the equation.
x^{2}+14x-720-1=0
Subtracting 1 from itself leaves 0.
x^{2}+14x-721=0
Subtract 1 from -720.
x=\frac{-14±\sqrt{14^{2}-4\left(-721\right)}}{2}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 1 for a, 14 for b, and -721 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-14±\sqrt{196-4\left(-721\right)}}{2}
Square 14.
x=\frac{-14±\sqrt{196+2884}}{2}
Multiply -4 times -721.
x=\frac{-14±\sqrt{3080}}{2}
Add 196 to 2884.
x=\frac{-14±2\sqrt{770}}{2}
Take the square root of 3080.
x=\frac{2\sqrt{770}-14}{2}
Now solve the equation x=\frac{-14±2\sqrt{770}}{2} when ± is plus. Add -14 to 2\sqrt{770}.
x=\sqrt{770}-7
Divide -14+2\sqrt{770} by 2.
x=\frac{-2\sqrt{770}-14}{2}
Now solve the equation x=\frac{-14±2\sqrt{770}}{2} when ± is minus. Subtract 2\sqrt{770} from -14.
x=-\sqrt{770}-7
Divide -14-2\sqrt{770} by 2.
x=\sqrt{770}-7 x=-\sqrt{770}-7
The equation is now solved.
x^{2}+14x-720=1
Quadratic equations such as this one can be solved by completing the square. In order to complete the square, the equation must first be in the form x^{2}+bx=c.
x^{2}+14x-720-\left(-720\right)=1-\left(-720\right)
Add 720 to both sides of the equation.
x^{2}+14x=1-\left(-720\right)
Subtracting -720 from itself leaves 0.
x^{2}+14x=721
Subtract -720 from 1.
x^{2}+14x+7^{2}=721+7^{2}
Divide 14, the coefficient of the x term, by 2 to get 7. Then add the square of 7 to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}+14x+49=721+49
Square 7.
x^{2}+14x+49=770
Add 721 to 49.
\left(x+7\right)^{2}=770
Factor x^{2}+14x+49. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x+7\right)^{2}}=\sqrt{770}
Take the square root of both sides of the equation.
x+7=\sqrt{770} x+7=-\sqrt{770}
Simplify.
x=\sqrt{770}-7 x=-\sqrt{770}-7
Subtract 7 from both sides of the equation.
x^{2}+14x-720=1
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
x^{2}+14x-720-1=1-1
Subtract 1 from both sides of the equation.
x^{2}+14x-720-1=0
Subtracting 1 from itself leaves 0.
x^{2}+14x-721=0
Subtract 1 from -720.
x=\frac{-14±\sqrt{14^{2}-4\left(-721\right)}}{2}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 1 for a, 14 for b, and -721 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-14±\sqrt{196-4\left(-721\right)}}{2}
Square 14.
x=\frac{-14±\sqrt{196+2884}}{2}
Multiply -4 times -721.
x=\frac{-14±\sqrt{3080}}{2}
Add 196 to 2884.
x=\frac{-14±2\sqrt{770}}{2}
Take the square root of 3080.
x=\frac{2\sqrt{770}-14}{2}
Now solve the equation x=\frac{-14±2\sqrt{770}}{2} when ± is plus. Add -14 to 2\sqrt{770}.
x=\sqrt{770}-7
Divide -14+2\sqrt{770} by 2.
x=\frac{-2\sqrt{770}-14}{2}
Now solve the equation x=\frac{-14±2\sqrt{770}}{2} when ± is minus. Subtract 2\sqrt{770} from -14.
x=-\sqrt{770}-7
Divide -14-2\sqrt{770} by 2.
x=\sqrt{770}-7 x=-\sqrt{770}-7
The equation is now solved.
x^{2}+14x-720=1
Quadratic equations such as this one can be solved by completing the square. In order to complete the square, the equation must first be in the form x^{2}+bx=c.
x^{2}+14x-720-\left(-720\right)=1-\left(-720\right)
Add 720 to both sides of the equation.
x^{2}+14x=1-\left(-720\right)
Subtracting -720 from itself leaves 0.
x^{2}+14x=721
Subtract -720 from 1.
x^{2}+14x+7^{2}=721+7^{2}
Divide 14, the coefficient of the x term, by 2 to get 7. Then add the square of 7 to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}+14x+49=721+49
Square 7.
x^{2}+14x+49=770
Add 721 to 49.
\left(x+7\right)^{2}=770
Factor x^{2}+14x+49. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x+7\right)^{2}}=\sqrt{770}
Take the square root of both sides of the equation.
x+7=\sqrt{770} x+7=-\sqrt{770}
Simplify.
x=\sqrt{770}-7 x=-\sqrt{770}-7
Subtract 7 from both sides of the equation.