Solve for x (complex solution)
x=\sqrt{67}-7\approx 1.185352772
x=-\left(\sqrt{67}+7\right)\approx -15.185352772
Solve for x
x=\sqrt{67}-7\approx 1.185352772
x=-\sqrt{67}-7\approx -15.185352772
Graph
Share
Copied to clipboard
x^{2}+14x=18
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
x^{2}+14x-18=18-18
Subtract 18 from both sides of the equation.
x^{2}+14x-18=0
Subtracting 18 from itself leaves 0.
x=\frac{-14±\sqrt{14^{2}-4\left(-18\right)}}{2}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 1 for a, 14 for b, and -18 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-14±\sqrt{196-4\left(-18\right)}}{2}
Square 14.
x=\frac{-14±\sqrt{196+72}}{2}
Multiply -4 times -18.
x=\frac{-14±\sqrt{268}}{2}
Add 196 to 72.
x=\frac{-14±2\sqrt{67}}{2}
Take the square root of 268.
x=\frac{2\sqrt{67}-14}{2}
Now solve the equation x=\frac{-14±2\sqrt{67}}{2} when ± is plus. Add -14 to 2\sqrt{67}.
x=\sqrt{67}-7
Divide -14+2\sqrt{67} by 2.
x=\frac{-2\sqrt{67}-14}{2}
Now solve the equation x=\frac{-14±2\sqrt{67}}{2} when ± is minus. Subtract 2\sqrt{67} from -14.
x=-\sqrt{67}-7
Divide -14-2\sqrt{67} by 2.
x=\sqrt{67}-7 x=-\sqrt{67}-7
The equation is now solved.
x^{2}+14x=18
Quadratic equations such as this one can be solved by completing the square. In order to complete the square, the equation must first be in the form x^{2}+bx=c.
x^{2}+14x+7^{2}=18+7^{2}
Divide 14, the coefficient of the x term, by 2 to get 7. Then add the square of 7 to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}+14x+49=18+49
Square 7.
x^{2}+14x+49=67
Add 18 to 49.
\left(x+7\right)^{2}=67
Factor x^{2}+14x+49. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x+7\right)^{2}}=\sqrt{67}
Take the square root of both sides of the equation.
x+7=\sqrt{67} x+7=-\sqrt{67}
Simplify.
x=\sqrt{67}-7 x=-\sqrt{67}-7
Subtract 7 from both sides of the equation.
x^{2}+14x=18
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
x^{2}+14x-18=18-18
Subtract 18 from both sides of the equation.
x^{2}+14x-18=0
Subtracting 18 from itself leaves 0.
x=\frac{-14±\sqrt{14^{2}-4\left(-18\right)}}{2}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 1 for a, 14 for b, and -18 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-14±\sqrt{196-4\left(-18\right)}}{2}
Square 14.
x=\frac{-14±\sqrt{196+72}}{2}
Multiply -4 times -18.
x=\frac{-14±\sqrt{268}}{2}
Add 196 to 72.
x=\frac{-14±2\sqrt{67}}{2}
Take the square root of 268.
x=\frac{2\sqrt{67}-14}{2}
Now solve the equation x=\frac{-14±2\sqrt{67}}{2} when ± is plus. Add -14 to 2\sqrt{67}.
x=\sqrt{67}-7
Divide -14+2\sqrt{67} by 2.
x=\frac{-2\sqrt{67}-14}{2}
Now solve the equation x=\frac{-14±2\sqrt{67}}{2} when ± is minus. Subtract 2\sqrt{67} from -14.
x=-\sqrt{67}-7
Divide -14-2\sqrt{67} by 2.
x=\sqrt{67}-7 x=-\sqrt{67}-7
The equation is now solved.
x^{2}+14x=18
Quadratic equations such as this one can be solved by completing the square. In order to complete the square, the equation must first be in the form x^{2}+bx=c.
x^{2}+14x+7^{2}=18+7^{2}
Divide 14, the coefficient of the x term, by 2 to get 7. Then add the square of 7 to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}+14x+49=18+49
Square 7.
x^{2}+14x+49=67
Add 18 to 49.
\left(x+7\right)^{2}=67
Factor x^{2}+14x+49. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x+7\right)^{2}}=\sqrt{67}
Take the square root of both sides of the equation.
x+7=\sqrt{67} x+7=-\sqrt{67}
Simplify.
x=\sqrt{67}-7 x=-\sqrt{67}-7
Subtract 7 from both sides of the equation.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}