Skip to main content
Solve for x (complex solution)
Tick mark Image
Solve for x
Tick mark Image
Graph

Similar Problems from Web Search

Share

x^{2}+12x+36=5
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
x^{2}+12x+36-5=5-5
Subtract 5 from both sides of the equation.
x^{2}+12x+36-5=0
Subtracting 5 from itself leaves 0.
x^{2}+12x+31=0
Subtract 5 from 36.
x=\frac{-12±\sqrt{12^{2}-4\times 31}}{2}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 1 for a, 12 for b, and 31 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-12±\sqrt{144-4\times 31}}{2}
Square 12.
x=\frac{-12±\sqrt{144-124}}{2}
Multiply -4 times 31.
x=\frac{-12±\sqrt{20}}{2}
Add 144 to -124.
x=\frac{-12±2\sqrt{5}}{2}
Take the square root of 20.
x=\frac{2\sqrt{5}-12}{2}
Now solve the equation x=\frac{-12±2\sqrt{5}}{2} when ± is plus. Add -12 to 2\sqrt{5}.
x=\sqrt{5}-6
Divide -12+2\sqrt{5} by 2.
x=\frac{-2\sqrt{5}-12}{2}
Now solve the equation x=\frac{-12±2\sqrt{5}}{2} when ± is minus. Subtract 2\sqrt{5} from -12.
x=-\sqrt{5}-6
Divide -12-2\sqrt{5} by 2.
x=\sqrt{5}-6 x=-\sqrt{5}-6
The equation is now solved.
\left(x+6\right)^{2}=5
Factor x^{2}+12x+36. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x+6\right)^{2}}=\sqrt{5}
Take the square root of both sides of the equation.
x+6=\sqrt{5} x+6=-\sqrt{5}
Simplify.
x=\sqrt{5}-6 x=-\sqrt{5}-6
Subtract 6 from both sides of the equation.
x^{2}+12x+36=5
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
x^{2}+12x+36-5=5-5
Subtract 5 from both sides of the equation.
x^{2}+12x+36-5=0
Subtracting 5 from itself leaves 0.
x^{2}+12x+31=0
Subtract 5 from 36.
x=\frac{-12±\sqrt{12^{2}-4\times 31}}{2}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 1 for a, 12 for b, and 31 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-12±\sqrt{144-4\times 31}}{2}
Square 12.
x=\frac{-12±\sqrt{144-124}}{2}
Multiply -4 times 31.
x=\frac{-12±\sqrt{20}}{2}
Add 144 to -124.
x=\frac{-12±2\sqrt{5}}{2}
Take the square root of 20.
x=\frac{2\sqrt{5}-12}{2}
Now solve the equation x=\frac{-12±2\sqrt{5}}{2} when ± is plus. Add -12 to 2\sqrt{5}.
x=\sqrt{5}-6
Divide -12+2\sqrt{5} by 2.
x=\frac{-2\sqrt{5}-12}{2}
Now solve the equation x=\frac{-12±2\sqrt{5}}{2} when ± is minus. Subtract 2\sqrt{5} from -12.
x=-\sqrt{5}-6
Divide -12-2\sqrt{5} by 2.
x=\sqrt{5}-6 x=-\sqrt{5}-6
The equation is now solved.
\left(x+6\right)^{2}=5
Factor x^{2}+12x+36. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x+6\right)^{2}}=\sqrt{5}
Take the square root of both sides of the equation.
x+6=\sqrt{5} x+6=-\sqrt{5}
Simplify.
x=\sqrt{5}-6 x=-\sqrt{5}-6
Subtract 6 from both sides of the equation.