Solve for x
x=-5
x=5
Graph
Share
Copied to clipboard
\sqrt{x^{2}+11}=42-\left(x^{2}+11\right)
Subtract x^{2}+11 from both sides of the equation.
\sqrt{x^{2}+11}=42-x^{2}-11
To find the opposite of x^{2}+11, find the opposite of each term.
\sqrt{x^{2}+11}=31-x^{2}
Subtract 11 from 42 to get 31.
\left(\sqrt{x^{2}+11}\right)^{2}=\left(31-x^{2}\right)^{2}
Square both sides of the equation.
x^{2}+11=\left(31-x^{2}\right)^{2}
Calculate \sqrt{x^{2}+11} to the power of 2 and get x^{2}+11.
x^{2}+11=961-62x^{2}+\left(x^{2}\right)^{2}
Use binomial theorem \left(a-b\right)^{2}=a^{2}-2ab+b^{2} to expand \left(31-x^{2}\right)^{2}.
x^{2}+11=961-62x^{2}+x^{4}
To raise a power to another power, multiply the exponents. Multiply 2 and 2 to get 4.
x^{2}+11-961=-62x^{2}+x^{4}
Subtract 961 from both sides.
x^{2}-950=-62x^{2}+x^{4}
Subtract 961 from 11 to get -950.
x^{2}-950+62x^{2}=x^{4}
Add 62x^{2} to both sides.
63x^{2}-950=x^{4}
Combine x^{2} and 62x^{2} to get 63x^{2}.
63x^{2}-950-x^{4}=0
Subtract x^{4} from both sides.
-t^{2}+63t-950=0
Substitute t for x^{2}.
t=\frac{-63±\sqrt{63^{2}-4\left(-1\right)\left(-950\right)}}{-2}
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. Substitute -1 for a, 63 for b, and -950 for c in the quadratic formula.
t=\frac{-63±13}{-2}
Do the calculations.
t=25 t=38
Solve the equation t=\frac{-63±13}{-2} when ± is plus and when ± is minus.
x=5 x=-5 x=\sqrt{38} x=-\sqrt{38}
Since x=t^{2}, the solutions are obtained by evaluating x=±\sqrt{t} for each t.
5^{2}+11+\sqrt{5^{2}+11}=42
Substitute 5 for x in the equation x^{2}+11+\sqrt{x^{2}+11}=42.
42=42
Simplify. The value x=5 satisfies the equation.
\left(-5\right)^{2}+11+\sqrt{\left(-5\right)^{2}+11}=42
Substitute -5 for x in the equation x^{2}+11+\sqrt{x^{2}+11}=42.
42=42
Simplify. The value x=-5 satisfies the equation.
\left(\sqrt{38}\right)^{2}+11+\sqrt{\left(\sqrt{38}\right)^{2}+11}=42
Substitute \sqrt{38} for x in the equation x^{2}+11+\sqrt{x^{2}+11}=42.
56=42
Simplify. The value x=\sqrt{38} does not satisfy the equation.
\left(-\sqrt{38}\right)^{2}+11+\sqrt{\left(-\sqrt{38}\right)^{2}+11}=42
Substitute -\sqrt{38} for x in the equation x^{2}+11+\sqrt{x^{2}+11}=42.
56=42
Simplify. The value x=-\sqrt{38} does not satisfy the equation.
x=5 x=-5
List all solutions of \sqrt{x^{2}+11}=31-x^{2}.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}