Solve for x (complex solution)
x=\sqrt{7}-5\approx -2.354248689
x=-\left(\sqrt{7}+5\right)\approx -7.645751311
Solve for x
x=\sqrt{7}-5\approx -2.354248689
x=-\sqrt{7}-5\approx -7.645751311
Graph
Share
Copied to clipboard
x^{2}+10x+25=7
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
x^{2}+10x+25-7=7-7
Subtract 7 from both sides of the equation.
x^{2}+10x+25-7=0
Subtracting 7 from itself leaves 0.
x^{2}+10x+18=0
Subtract 7 from 25.
x=\frac{-10±\sqrt{10^{2}-4\times 18}}{2}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 1 for a, 10 for b, and 18 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-10±\sqrt{100-4\times 18}}{2}
Square 10.
x=\frac{-10±\sqrt{100-72}}{2}
Multiply -4 times 18.
x=\frac{-10±\sqrt{28}}{2}
Add 100 to -72.
x=\frac{-10±2\sqrt{7}}{2}
Take the square root of 28.
x=\frac{2\sqrt{7}-10}{2}
Now solve the equation x=\frac{-10±2\sqrt{7}}{2} when ± is plus. Add -10 to 2\sqrt{7}.
x=\sqrt{7}-5
Divide -10+2\sqrt{7} by 2.
x=\frac{-2\sqrt{7}-10}{2}
Now solve the equation x=\frac{-10±2\sqrt{7}}{2} when ± is minus. Subtract 2\sqrt{7} from -10.
x=-\sqrt{7}-5
Divide -10-2\sqrt{7} by 2.
x=\sqrt{7}-5 x=-\sqrt{7}-5
The equation is now solved.
\left(x+5\right)^{2}=7
Factor x^{2}+10x+25. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x+5\right)^{2}}=\sqrt{7}
Take the square root of both sides of the equation.
x+5=\sqrt{7} x+5=-\sqrt{7}
Simplify.
x=\sqrt{7}-5 x=-\sqrt{7}-5
Subtract 5 from both sides of the equation.
x^{2}+10x+25=7
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
x^{2}+10x+25-7=7-7
Subtract 7 from both sides of the equation.
x^{2}+10x+25-7=0
Subtracting 7 from itself leaves 0.
x^{2}+10x+18=0
Subtract 7 from 25.
x=\frac{-10±\sqrt{10^{2}-4\times 18}}{2}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 1 for a, 10 for b, and 18 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-10±\sqrt{100-4\times 18}}{2}
Square 10.
x=\frac{-10±\sqrt{100-72}}{2}
Multiply -4 times 18.
x=\frac{-10±\sqrt{28}}{2}
Add 100 to -72.
x=\frac{-10±2\sqrt{7}}{2}
Take the square root of 28.
x=\frac{2\sqrt{7}-10}{2}
Now solve the equation x=\frac{-10±2\sqrt{7}}{2} when ± is plus. Add -10 to 2\sqrt{7}.
x=\sqrt{7}-5
Divide -10+2\sqrt{7} by 2.
x=\frac{-2\sqrt{7}-10}{2}
Now solve the equation x=\frac{-10±2\sqrt{7}}{2} when ± is minus. Subtract 2\sqrt{7} from -10.
x=-\sqrt{7}-5
Divide -10-2\sqrt{7} by 2.
x=\sqrt{7}-5 x=-\sqrt{7}-5
The equation is now solved.
\left(x+5\right)^{2}=7
Factor x^{2}+10x+25. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x+5\right)^{2}}=\sqrt{7}
Take the square root of both sides of the equation.
x+5=\sqrt{7} x+5=-\sqrt{7}
Simplify.
x=\sqrt{7}-5 x=-\sqrt{7}-5
Subtract 5 from both sides of the equation.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}