Skip to main content
Solve for x
Tick mark Image
Graph

Similar Problems from Web Search

Share

x^{2}+10x+24=0
To solve the inequality, factor the left hand side. Quadratic polynomial can be factored using the transformation ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right), where x_{1} and x_{2} are the solutions of the quadratic equation ax^{2}+bx+c=0.
x=\frac{-10±\sqrt{10^{2}-4\times 1\times 24}}{2}
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. Substitute 1 for a, 10 for b, and 24 for c in the quadratic formula.
x=\frac{-10±2}{2}
Do the calculations.
x=-4 x=-6
Solve the equation x=\frac{-10±2}{2} when ± is plus and when ± is minus.
\left(x+4\right)\left(x+6\right)>0
Rewrite the inequality by using the obtained solutions.
x+4<0 x+6<0
For the product to be positive, x+4 and x+6 have to be both negative or both positive. Consider the case when x+4 and x+6 are both negative.
x<-6
The solution satisfying both inequalities is x<-6.
x+6>0 x+4>0
Consider the case when x+4 and x+6 are both positive.
x>-4
The solution satisfying both inequalities is x>-4.
x<-6\text{; }x>-4
The final solution is the union of the obtained solutions.