Solve for x
x=\frac{\sqrt{251}-1}{125}\approx 0.118743836
x=\frac{-\sqrt{251}-1}{125}\approx -0.134743836
Graph
Share
Copied to clipboard
x^{2}+1.6\times \frac{1}{100}x-1.6\times 10^{-2}=0
Calculate 10 to the power of -2 and get \frac{1}{100}.
x^{2}+\frac{2}{125}x-1.6\times 10^{-2}=0
Multiply 1.6 and \frac{1}{100} to get \frac{2}{125}.
x^{2}+\frac{2}{125}x-1.6\times \frac{1}{100}=0
Calculate 10 to the power of -2 and get \frac{1}{100}.
x^{2}+\frac{2}{125}x-\frac{2}{125}=0
Multiply 1.6 and \frac{1}{100} to get \frac{2}{125}.
x=\frac{-\frac{2}{125}±\sqrt{\left(\frac{2}{125}\right)^{2}-4\left(-\frac{2}{125}\right)}}{2}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 1 for a, \frac{2}{125} for b, and -\frac{2}{125} for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-\frac{2}{125}±\sqrt{\frac{4}{15625}-4\left(-\frac{2}{125}\right)}}{2}
Square \frac{2}{125} by squaring both the numerator and the denominator of the fraction.
x=\frac{-\frac{2}{125}±\sqrt{\frac{4}{15625}+\frac{8}{125}}}{2}
Multiply -4 times -\frac{2}{125}.
x=\frac{-\frac{2}{125}±\sqrt{\frac{1004}{15625}}}{2}
Add \frac{4}{15625} to \frac{8}{125} by finding a common denominator and adding the numerators. Then reduce the fraction to lowest terms if possible.
x=\frac{-\frac{2}{125}±\frac{2\sqrt{251}}{125}}{2}
Take the square root of \frac{1004}{15625}.
x=\frac{2\sqrt{251}-2}{2\times 125}
Now solve the equation x=\frac{-\frac{2}{125}±\frac{2\sqrt{251}}{125}}{2} when ± is plus. Add -\frac{2}{125} to \frac{2\sqrt{251}}{125}.
x=\frac{\sqrt{251}-1}{125}
Divide \frac{-2+2\sqrt{251}}{125} by 2.
x=\frac{-2\sqrt{251}-2}{2\times 125}
Now solve the equation x=\frac{-\frac{2}{125}±\frac{2\sqrt{251}}{125}}{2} when ± is minus. Subtract \frac{2\sqrt{251}}{125} from -\frac{2}{125}.
x=\frac{-\sqrt{251}-1}{125}
Divide \frac{-2-2\sqrt{251}}{125} by 2.
x=\frac{\sqrt{251}-1}{125} x=\frac{-\sqrt{251}-1}{125}
The equation is now solved.
x^{2}+1.6\times \frac{1}{100}x-1.6\times 10^{-2}=0
Calculate 10 to the power of -2 and get \frac{1}{100}.
x^{2}+\frac{2}{125}x-1.6\times 10^{-2}=0
Multiply 1.6 and \frac{1}{100} to get \frac{2}{125}.
x^{2}+\frac{2}{125}x-1.6\times \frac{1}{100}=0
Calculate 10 to the power of -2 and get \frac{1}{100}.
x^{2}+\frac{2}{125}x-\frac{2}{125}=0
Multiply 1.6 and \frac{1}{100} to get \frac{2}{125}.
x^{2}+\frac{2}{125}x=\frac{2}{125}
Add \frac{2}{125} to both sides. Anything plus zero gives itself.
x^{2}+\frac{2}{125}x+\left(\frac{1}{125}\right)^{2}=\frac{2}{125}+\left(\frac{1}{125}\right)^{2}
Divide \frac{2}{125}, the coefficient of the x term, by 2 to get \frac{1}{125}. Then add the square of \frac{1}{125} to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}+\frac{2}{125}x+\frac{1}{15625}=\frac{2}{125}+\frac{1}{15625}
Square \frac{1}{125} by squaring both the numerator and the denominator of the fraction.
x^{2}+\frac{2}{125}x+\frac{1}{15625}=\frac{251}{15625}
Add \frac{2}{125} to \frac{1}{15625} by finding a common denominator and adding the numerators. Then reduce the fraction to lowest terms if possible.
\left(x+\frac{1}{125}\right)^{2}=\frac{251}{15625}
Factor x^{2}+\frac{2}{125}x+\frac{1}{15625}. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x+\frac{1}{125}\right)^{2}}=\sqrt{\frac{251}{15625}}
Take the square root of both sides of the equation.
x+\frac{1}{125}=\frac{\sqrt{251}}{125} x+\frac{1}{125}=-\frac{\sqrt{251}}{125}
Simplify.
x=\frac{\sqrt{251}-1}{125} x=\frac{-\sqrt{251}-1}{125}
Subtract \frac{1}{125} from both sides of the equation.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}