Solve for x
x=30\sqrt{2}-40\approx 2.426406871
x=-30\sqrt{2}-40\approx -82.426406871
Graph
Share
Copied to clipboard
x^{2}+80x-5\times 40=0
Multiply 1 and 80 to get 80.
x^{2}+80x-200=0
Multiply 5 and 40 to get 200.
x=\frac{-80±\sqrt{80^{2}-4\left(-200\right)}}{2}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 1 for a, 80 for b, and -200 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-80±\sqrt{6400-4\left(-200\right)}}{2}
Square 80.
x=\frac{-80±\sqrt{6400+800}}{2}
Multiply -4 times -200.
x=\frac{-80±\sqrt{7200}}{2}
Add 6400 to 800.
x=\frac{-80±60\sqrt{2}}{2}
Take the square root of 7200.
x=\frac{60\sqrt{2}-80}{2}
Now solve the equation x=\frac{-80±60\sqrt{2}}{2} when ± is plus. Add -80 to 60\sqrt{2}.
x=30\sqrt{2}-40
Divide -80+60\sqrt{2} by 2.
x=\frac{-60\sqrt{2}-80}{2}
Now solve the equation x=\frac{-80±60\sqrt{2}}{2} when ± is minus. Subtract 60\sqrt{2} from -80.
x=-30\sqrt{2}-40
Divide -80-60\sqrt{2} by 2.
x=30\sqrt{2}-40 x=-30\sqrt{2}-40
The equation is now solved.
x^{2}+80x-5\times 40=0
Multiply 1 and 80 to get 80.
x^{2}+80x-200=0
Multiply 5 and 40 to get 200.
x^{2}+80x=200
Add 200 to both sides. Anything plus zero gives itself.
x^{2}+80x+40^{2}=200+40^{2}
Divide 80, the coefficient of the x term, by 2 to get 40. Then add the square of 40 to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}+80x+1600=200+1600
Square 40.
x^{2}+80x+1600=1800
Add 200 to 1600.
\left(x+40\right)^{2}=1800
Factor x^{2}+80x+1600. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x+40\right)^{2}}=\sqrt{1800}
Take the square root of both sides of the equation.
x+40=30\sqrt{2} x+40=-30\sqrt{2}
Simplify.
x=30\sqrt{2}-40 x=-30\sqrt{2}-40
Subtract 40 from both sides of the equation.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}