Solve for x (complex solution)
x=\frac{-9+i\sqrt{2559}}{20}\approx -0.45+2.529327974i
x=\frac{-i\sqrt{2559}-9}{20}\approx -0.45-2.529327974i
Graph
Share
Copied to clipboard
x^{2}+0.9x+6.6=0
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
x=\frac{-0.9±\sqrt{0.9^{2}-4\times 6.6}}{2}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 1 for a, 0.9 for b, and 6.6 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-0.9±\sqrt{0.81-4\times 6.6}}{2}
Square 0.9 by squaring both the numerator and the denominator of the fraction.
x=\frac{-0.9±\sqrt{0.81-26.4}}{2}
Multiply -4 times 6.6.
x=\frac{-0.9±\sqrt{-25.59}}{2}
Add 0.81 to -26.4 by finding a common denominator and adding the numerators. Then reduce the fraction to lowest terms if possible.
x=\frac{-0.9±\frac{\sqrt{2559}i}{10}}{2}
Take the square root of -25.59.
x=\frac{-9+\sqrt{2559}i}{2\times 10}
Now solve the equation x=\frac{-0.9±\frac{\sqrt{2559}i}{10}}{2} when ± is plus. Add -0.9 to \frac{i\sqrt{2559}}{10}.
x=\frac{-9+\sqrt{2559}i}{20}
Divide \frac{-9+i\sqrt{2559}}{10} by 2.
x=\frac{-\sqrt{2559}i-9}{2\times 10}
Now solve the equation x=\frac{-0.9±\frac{\sqrt{2559}i}{10}}{2} when ± is minus. Subtract \frac{i\sqrt{2559}}{10} from -0.9.
x=\frac{-\sqrt{2559}i-9}{20}
Divide \frac{-9-i\sqrt{2559}}{10} by 2.
x=\frac{-9+\sqrt{2559}i}{20} x=\frac{-\sqrt{2559}i-9}{20}
The equation is now solved.
x^{2}+0.9x+6.6=0
Quadratic equations such as this one can be solved by completing the square. In order to complete the square, the equation must first be in the form x^{2}+bx=c.
x^{2}+0.9x+6.6-6.6=-6.6
Subtract 6.6 from both sides of the equation.
x^{2}+0.9x=-6.6
Subtracting 6.6 from itself leaves 0.
x^{2}+0.9x+0.45^{2}=-6.6+0.45^{2}
Divide 0.9, the coefficient of the x term, by 2 to get 0.45. Then add the square of 0.45 to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}+0.9x+0.2025=-6.6+0.2025
Square 0.45 by squaring both the numerator and the denominator of the fraction.
x^{2}+0.9x+0.2025=-6.3975
Add -6.6 to 0.2025 by finding a common denominator and adding the numerators. Then reduce the fraction to lowest terms if possible.
\left(x+0.45\right)^{2}=-6.3975
Factor x^{2}+0.9x+0.2025. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x+0.45\right)^{2}}=\sqrt{-6.3975}
Take the square root of both sides of the equation.
x+0.45=\frac{\sqrt{2559}i}{20} x+0.45=-\frac{\sqrt{2559}i}{20}
Simplify.
x=\frac{-9+\sqrt{2559}i}{20} x=\frac{-\sqrt{2559}i-9}{20}
Subtract 0.45 from both sides of the equation.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}