Solve for x
x=\frac{\sqrt{4241081}-491}{2000}\approx 0.784194251
x=\frac{-\sqrt{4241081}-491}{2000}\approx -1.275194251
Graph
Share
Copied to clipboard
x^{2}+0.491x-1=0
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
x=\frac{-0.491±\sqrt{0.491^{2}-4\left(-1\right)}}{2}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 1 for a, 0.491 for b, and -1 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-0.491±\sqrt{0.241081-4\left(-1\right)}}{2}
Square 0.491 by squaring both the numerator and the denominator of the fraction.
x=\frac{-0.491±\sqrt{0.241081+4}}{2}
Multiply -4 times -1.
x=\frac{-0.491±\sqrt{4.241081}}{2}
Add 0.241081 to 4.
x=\frac{-0.491±\frac{\sqrt{4241081}}{1000}}{2}
Take the square root of 4.241081.
x=\frac{\sqrt{4241081}-491}{2\times 1000}
Now solve the equation x=\frac{-0.491±\frac{\sqrt{4241081}}{1000}}{2} when ± is plus. Add -0.491 to \frac{\sqrt{4241081}}{1000}.
x=\frac{\sqrt{4241081}-491}{2000}
Divide \frac{-491+\sqrt{4241081}}{1000} by 2.
x=\frac{-\sqrt{4241081}-491}{2\times 1000}
Now solve the equation x=\frac{-0.491±\frac{\sqrt{4241081}}{1000}}{2} when ± is minus. Subtract \frac{\sqrt{4241081}}{1000} from -0.491.
x=\frac{-\sqrt{4241081}-491}{2000}
Divide \frac{-491-\sqrt{4241081}}{1000} by 2.
x=\frac{\sqrt{4241081}-491}{2000} x=\frac{-\sqrt{4241081}-491}{2000}
The equation is now solved.
x^{2}+0.491x-1=0
Quadratic equations such as this one can be solved by completing the square. In order to complete the square, the equation must first be in the form x^{2}+bx=c.
x^{2}+0.491x-1-\left(-1\right)=-\left(-1\right)
Add 1 to both sides of the equation.
x^{2}+0.491x=-\left(-1\right)
Subtracting -1 from itself leaves 0.
x^{2}+0.491x=1
Subtract -1 from 0.
x^{2}+0.491x+0.2455^{2}=1+0.2455^{2}
Divide 0.491, the coefficient of the x term, by 2 to get 0.2455. Then add the square of 0.2455 to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}+0.491x+0.06027025=1+0.06027025
Square 0.2455 by squaring both the numerator and the denominator of the fraction.
x^{2}+0.491x+0.06027025=1.06027025
Add 1 to 0.06027025.
\left(x+0.2455\right)^{2}=1.06027025
Factor x^{2}+0.491x+0.06027025. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x+0.2455\right)^{2}}=\sqrt{1.06027025}
Take the square root of both sides of the equation.
x+0.2455=\frac{\sqrt{4241081}}{2000} x+0.2455=-\frac{\sqrt{4241081}}{2000}
Simplify.
x=\frac{\sqrt{4241081}-491}{2000} x=\frac{-\sqrt{4241081}-491}{2000}
Subtract 0.2455 from both sides of the equation.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}