Solve for y
y=-x^{\frac{4}{3}}+\frac{1}{x^{\frac{2}{3}}}
x\neq 0
Graph
Share
Copied to clipboard
y\sqrt[3]{x^{2}}=1-x^{2}
Subtract x^{2} from both sides.
\sqrt[3]{x^{2}}y=1-x^{2}
The equation is in standard form.
\frac{\sqrt[3]{x^{2}}y}{\sqrt[3]{x^{2}}}=\frac{1-x^{2}}{\sqrt[3]{x^{2}}}
Divide both sides by \sqrt[3]{x^{2}}.
y=\frac{1-x^{2}}{\sqrt[3]{x^{2}}}
Dividing by \sqrt[3]{x^{2}} undoes the multiplication by \sqrt[3]{x^{2}}.
y=-x^{\frac{4}{3}}+\frac{1}{x^{\frac{2}{3}}}
Divide -x^{2}+1 by \sqrt[3]{x^{2}}.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}