x ^ { 2 } + ( x y + y ^ { 2 } ) d x = 0
Solve for d (complex solution)
\left\{\begin{matrix}d=-\frac{x}{y\left(x+y\right)}\text{, }&y\neq 0\text{ and }x\neq -y\\d\in \mathrm{C}\text{, }&x=0\end{matrix}\right.
Solve for d
\left\{\begin{matrix}d=-\frac{x}{y\left(x+y\right)}\text{, }&y\neq 0\text{ and }x\neq -y\\d\in \mathrm{R}\text{, }&x=0\end{matrix}\right.
Solve for x
\left\{\begin{matrix}\\x=0\text{, }&\text{unconditionally}\\x=-\frac{dy^{2}}{dy+1}\text{, }&d=0\text{ or }y\neq -\frac{1}{d}\end{matrix}\right.
Graph
Share
Copied to clipboard
x^{2}+\left(xyd+y^{2}d\right)x=0
Use the distributive property to multiply xy+y^{2} by d.
x^{2}+ydx^{2}+y^{2}dx=0
Use the distributive property to multiply xyd+y^{2}d by x.
ydx^{2}+y^{2}dx=-x^{2}
Subtract x^{2} from both sides. Anything subtracted from zero gives its negation.
\left(yx^{2}+y^{2}x\right)d=-x^{2}
Combine all terms containing d.
\left(xy^{2}+yx^{2}\right)d=-x^{2}
The equation is in standard form.
\frac{\left(xy^{2}+yx^{2}\right)d}{xy^{2}+yx^{2}}=-\frac{x^{2}}{xy^{2}+yx^{2}}
Divide both sides by yx^{2}+y^{2}x.
d=-\frac{x^{2}}{xy^{2}+yx^{2}}
Dividing by yx^{2}+y^{2}x undoes the multiplication by yx^{2}+y^{2}x.
d=-\frac{x}{y\left(x+y\right)}
Divide -x^{2} by yx^{2}+y^{2}x.
x^{2}+\left(xyd+y^{2}d\right)x=0
Use the distributive property to multiply xy+y^{2} by d.
x^{2}+ydx^{2}+y^{2}dx=0
Use the distributive property to multiply xyd+y^{2}d by x.
ydx^{2}+y^{2}dx=-x^{2}
Subtract x^{2} from both sides. Anything subtracted from zero gives its negation.
\left(yx^{2}+y^{2}x\right)d=-x^{2}
Combine all terms containing d.
\left(xy^{2}+yx^{2}\right)d=-x^{2}
The equation is in standard form.
\frac{\left(xy^{2}+yx^{2}\right)d}{xy^{2}+yx^{2}}=-\frac{x^{2}}{xy^{2}+yx^{2}}
Divide both sides by yx^{2}+y^{2}x.
d=-\frac{x^{2}}{xy^{2}+yx^{2}}
Dividing by yx^{2}+y^{2}x undoes the multiplication by yx^{2}+y^{2}x.
d=-\frac{x}{y\left(x+y\right)}
Divide -x^{2} by yx^{2}+y^{2}x.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}