Skip to main content
Solve for x (complex solution)
Tick mark Image
Graph

Similar Problems from Web Search

Share

x^{2}+x^{2}-12x+36=16
Use binomial theorem \left(a-b\right)^{2}=a^{2}-2ab+b^{2} to expand \left(x-6\right)^{2}.
2x^{2}-12x+36=16
Combine x^{2} and x^{2} to get 2x^{2}.
2x^{2}-12x+36-16=0
Subtract 16 from both sides.
2x^{2}-12x+20=0
Subtract 16 from 36 to get 20.
x=\frac{-\left(-12\right)±\sqrt{\left(-12\right)^{2}-4\times 2\times 20}}{2\times 2}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 2 for a, -12 for b, and 20 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-\left(-12\right)±\sqrt{144-4\times 2\times 20}}{2\times 2}
Square -12.
x=\frac{-\left(-12\right)±\sqrt{144-8\times 20}}{2\times 2}
Multiply -4 times 2.
x=\frac{-\left(-12\right)±\sqrt{144-160}}{2\times 2}
Multiply -8 times 20.
x=\frac{-\left(-12\right)±\sqrt{-16}}{2\times 2}
Add 144 to -160.
x=\frac{-\left(-12\right)±4i}{2\times 2}
Take the square root of -16.
x=\frac{12±4i}{2\times 2}
The opposite of -12 is 12.
x=\frac{12±4i}{4}
Multiply 2 times 2.
x=\frac{12+4i}{4}
Now solve the equation x=\frac{12±4i}{4} when ± is plus. Add 12 to 4i.
x=3+i
Divide 12+4i by 4.
x=\frac{12-4i}{4}
Now solve the equation x=\frac{12±4i}{4} when ± is minus. Subtract 4i from 12.
x=3-i
Divide 12-4i by 4.
x=3+i x=3-i
The equation is now solved.
x^{2}+x^{2}-12x+36=16
Use binomial theorem \left(a-b\right)^{2}=a^{2}-2ab+b^{2} to expand \left(x-6\right)^{2}.
2x^{2}-12x+36=16
Combine x^{2} and x^{2} to get 2x^{2}.
2x^{2}-12x=16-36
Subtract 36 from both sides.
2x^{2}-12x=-20
Subtract 36 from 16 to get -20.
\frac{2x^{2}-12x}{2}=-\frac{20}{2}
Divide both sides by 2.
x^{2}+\left(-\frac{12}{2}\right)x=-\frac{20}{2}
Dividing by 2 undoes the multiplication by 2.
x^{2}-6x=-\frac{20}{2}
Divide -12 by 2.
x^{2}-6x=-10
Divide -20 by 2.
x^{2}-6x+\left(-3\right)^{2}=-10+\left(-3\right)^{2}
Divide -6, the coefficient of the x term, by 2 to get -3. Then add the square of -3 to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}-6x+9=-10+9
Square -3.
x^{2}-6x+9=-1
Add -10 to 9.
\left(x-3\right)^{2}=-1
Factor x^{2}-6x+9. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x-3\right)^{2}}=\sqrt{-1}
Take the square root of both sides of the equation.
x-3=i x-3=-i
Simplify.
x=3+i x=3-i
Add 3 to both sides of the equation.