Skip to main content
Solve for x
Tick mark Image
Graph

Similar Problems from Web Search

Share

x^{2}+x^{2}+14x+49=15^{2}
Use binomial theorem \left(a+b\right)^{2}=a^{2}+2ab+b^{2} to expand \left(x+7\right)^{2}.
2x^{2}+14x+49=15^{2}
Combine x^{2} and x^{2} to get 2x^{2}.
2x^{2}+14x+49=225
Calculate 15 to the power of 2 and get 225.
2x^{2}+14x+49-225=0
Subtract 225 from both sides.
2x^{2}+14x-176=0
Subtract 225 from 49 to get -176.
x=\frac{-14±\sqrt{14^{2}-4\times 2\left(-176\right)}}{2\times 2}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 2 for a, 14 for b, and -176 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-14±\sqrt{196-4\times 2\left(-176\right)}}{2\times 2}
Square 14.
x=\frac{-14±\sqrt{196-8\left(-176\right)}}{2\times 2}
Multiply -4 times 2.
x=\frac{-14±\sqrt{196+1408}}{2\times 2}
Multiply -8 times -176.
x=\frac{-14±\sqrt{1604}}{2\times 2}
Add 196 to 1408.
x=\frac{-14±2\sqrt{401}}{2\times 2}
Take the square root of 1604.
x=\frac{-14±2\sqrt{401}}{4}
Multiply 2 times 2.
x=\frac{2\sqrt{401}-14}{4}
Now solve the equation x=\frac{-14±2\sqrt{401}}{4} when ± is plus. Add -14 to 2\sqrt{401}.
x=\frac{\sqrt{401}-7}{2}
Divide -14+2\sqrt{401} by 4.
x=\frac{-2\sqrt{401}-14}{4}
Now solve the equation x=\frac{-14±2\sqrt{401}}{4} when ± is minus. Subtract 2\sqrt{401} from -14.
x=\frac{-\sqrt{401}-7}{2}
Divide -14-2\sqrt{401} by 4.
x=\frac{\sqrt{401}-7}{2} x=\frac{-\sqrt{401}-7}{2}
The equation is now solved.
x^{2}+x^{2}+14x+49=15^{2}
Use binomial theorem \left(a+b\right)^{2}=a^{2}+2ab+b^{2} to expand \left(x+7\right)^{2}.
2x^{2}+14x+49=15^{2}
Combine x^{2} and x^{2} to get 2x^{2}.
2x^{2}+14x+49=225
Calculate 15 to the power of 2 and get 225.
2x^{2}+14x=225-49
Subtract 49 from both sides.
2x^{2}+14x=176
Subtract 49 from 225 to get 176.
\frac{2x^{2}+14x}{2}=\frac{176}{2}
Divide both sides by 2.
x^{2}+\frac{14}{2}x=\frac{176}{2}
Dividing by 2 undoes the multiplication by 2.
x^{2}+7x=\frac{176}{2}
Divide 14 by 2.
x^{2}+7x=88
Divide 176 by 2.
x^{2}+7x+\left(\frac{7}{2}\right)^{2}=88+\left(\frac{7}{2}\right)^{2}
Divide 7, the coefficient of the x term, by 2 to get \frac{7}{2}. Then add the square of \frac{7}{2} to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}+7x+\frac{49}{4}=88+\frac{49}{4}
Square \frac{7}{2} by squaring both the numerator and the denominator of the fraction.
x^{2}+7x+\frac{49}{4}=\frac{401}{4}
Add 88 to \frac{49}{4}.
\left(x+\frac{7}{2}\right)^{2}=\frac{401}{4}
Factor x^{2}+7x+\frac{49}{4}. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x+\frac{7}{2}\right)^{2}}=\sqrt{\frac{401}{4}}
Take the square root of both sides of the equation.
x+\frac{7}{2}=\frac{\sqrt{401}}{2} x+\frac{7}{2}=-\frac{\sqrt{401}}{2}
Simplify.
x=\frac{\sqrt{401}-7}{2} x=\frac{-\sqrt{401}-7}{2}
Subtract \frac{7}{2} from both sides of the equation.