Solve for x
x=-18
x=12
Graph
Share
Copied to clipboard
x^{2}+x^{2}+12x+36=468
Use binomial theorem \left(a+b\right)^{2}=a^{2}+2ab+b^{2} to expand \left(x+6\right)^{2}.
2x^{2}+12x+36=468
Combine x^{2} and x^{2} to get 2x^{2}.
2x^{2}+12x+36-468=0
Subtract 468 from both sides.
2x^{2}+12x-432=0
Subtract 468 from 36 to get -432.
x^{2}+6x-216=0
Divide both sides by 2.
a+b=6 ab=1\left(-216\right)=-216
To solve the equation, factor the left hand side by grouping. First, left hand side needs to be rewritten as x^{2}+ax+bx-216. To find a and b, set up a system to be solved.
-1,216 -2,108 -3,72 -4,54 -6,36 -8,27 -9,24 -12,18
Since ab is negative, a and b have the opposite signs. Since a+b is positive, the positive number has greater absolute value than the negative. List all such integer pairs that give product -216.
-1+216=215 -2+108=106 -3+72=69 -4+54=50 -6+36=30 -8+27=19 -9+24=15 -12+18=6
Calculate the sum for each pair.
a=-12 b=18
The solution is the pair that gives sum 6.
\left(x^{2}-12x\right)+\left(18x-216\right)
Rewrite x^{2}+6x-216 as \left(x^{2}-12x\right)+\left(18x-216\right).
x\left(x-12\right)+18\left(x-12\right)
Factor out x in the first and 18 in the second group.
\left(x-12\right)\left(x+18\right)
Factor out common term x-12 by using distributive property.
x=12 x=-18
To find equation solutions, solve x-12=0 and x+18=0.
x^{2}+x^{2}+12x+36=468
Use binomial theorem \left(a+b\right)^{2}=a^{2}+2ab+b^{2} to expand \left(x+6\right)^{2}.
2x^{2}+12x+36=468
Combine x^{2} and x^{2} to get 2x^{2}.
2x^{2}+12x+36-468=0
Subtract 468 from both sides.
2x^{2}+12x-432=0
Subtract 468 from 36 to get -432.
x=\frac{-12±\sqrt{12^{2}-4\times 2\left(-432\right)}}{2\times 2}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 2 for a, 12 for b, and -432 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-12±\sqrt{144-4\times 2\left(-432\right)}}{2\times 2}
Square 12.
x=\frac{-12±\sqrt{144-8\left(-432\right)}}{2\times 2}
Multiply -4 times 2.
x=\frac{-12±\sqrt{144+3456}}{2\times 2}
Multiply -8 times -432.
x=\frac{-12±\sqrt{3600}}{2\times 2}
Add 144 to 3456.
x=\frac{-12±60}{2\times 2}
Take the square root of 3600.
x=\frac{-12±60}{4}
Multiply 2 times 2.
x=\frac{48}{4}
Now solve the equation x=\frac{-12±60}{4} when ± is plus. Add -12 to 60.
x=12
Divide 48 by 4.
x=-\frac{72}{4}
Now solve the equation x=\frac{-12±60}{4} when ± is minus. Subtract 60 from -12.
x=-18
Divide -72 by 4.
x=12 x=-18
The equation is now solved.
x^{2}+x^{2}+12x+36=468
Use binomial theorem \left(a+b\right)^{2}=a^{2}+2ab+b^{2} to expand \left(x+6\right)^{2}.
2x^{2}+12x+36=468
Combine x^{2} and x^{2} to get 2x^{2}.
2x^{2}+12x=468-36
Subtract 36 from both sides.
2x^{2}+12x=432
Subtract 36 from 468 to get 432.
\frac{2x^{2}+12x}{2}=\frac{432}{2}
Divide both sides by 2.
x^{2}+\frac{12}{2}x=\frac{432}{2}
Dividing by 2 undoes the multiplication by 2.
x^{2}+6x=\frac{432}{2}
Divide 12 by 2.
x^{2}+6x=216
Divide 432 by 2.
x^{2}+6x+3^{2}=216+3^{2}
Divide 6, the coefficient of the x term, by 2 to get 3. Then add the square of 3 to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}+6x+9=216+9
Square 3.
x^{2}+6x+9=225
Add 216 to 9.
\left(x+3\right)^{2}=225
Factor x^{2}+6x+9. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x+3\right)^{2}}=\sqrt{225}
Take the square root of both sides of the equation.
x+3=15 x+3=-15
Simplify.
x=12 x=-18
Subtract 3 from both sides of the equation.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}