Skip to main content
Solve for x
Tick mark Image
Graph

Similar Problems from Web Search

Share

x^{2}+x^{2}+10x+25=25^{2}
Use binomial theorem \left(a+b\right)^{2}=a^{2}+2ab+b^{2} to expand \left(x+5\right)^{2}.
2x^{2}+10x+25=25^{2}
Combine x^{2} and x^{2} to get 2x^{2}.
2x^{2}+10x+25=625
Calculate 25 to the power of 2 and get 625.
2x^{2}+10x+25-625=0
Subtract 625 from both sides.
2x^{2}+10x-600=0
Subtract 625 from 25 to get -600.
x^{2}+5x-300=0
Divide both sides by 2.
a+b=5 ab=1\left(-300\right)=-300
To solve the equation, factor the left hand side by grouping. First, left hand side needs to be rewritten as x^{2}+ax+bx-300. To find a and b, set up a system to be solved.
-1,300 -2,150 -3,100 -4,75 -5,60 -6,50 -10,30 -12,25 -15,20
Since ab is negative, a and b have the opposite signs. Since a+b is positive, the positive number has greater absolute value than the negative. List all such integer pairs that give product -300.
-1+300=299 -2+150=148 -3+100=97 -4+75=71 -5+60=55 -6+50=44 -10+30=20 -12+25=13 -15+20=5
Calculate the sum for each pair.
a=-15 b=20
The solution is the pair that gives sum 5.
\left(x^{2}-15x\right)+\left(20x-300\right)
Rewrite x^{2}+5x-300 as \left(x^{2}-15x\right)+\left(20x-300\right).
x\left(x-15\right)+20\left(x-15\right)
Factor out x in the first and 20 in the second group.
\left(x-15\right)\left(x+20\right)
Factor out common term x-15 by using distributive property.
x=15 x=-20
To find equation solutions, solve x-15=0 and x+20=0.
x^{2}+x^{2}+10x+25=25^{2}
Use binomial theorem \left(a+b\right)^{2}=a^{2}+2ab+b^{2} to expand \left(x+5\right)^{2}.
2x^{2}+10x+25=25^{2}
Combine x^{2} and x^{2} to get 2x^{2}.
2x^{2}+10x+25=625
Calculate 25 to the power of 2 and get 625.
2x^{2}+10x+25-625=0
Subtract 625 from both sides.
2x^{2}+10x-600=0
Subtract 625 from 25 to get -600.
x=\frac{-10±\sqrt{10^{2}-4\times 2\left(-600\right)}}{2\times 2}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 2 for a, 10 for b, and -600 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-10±\sqrt{100-4\times 2\left(-600\right)}}{2\times 2}
Square 10.
x=\frac{-10±\sqrt{100-8\left(-600\right)}}{2\times 2}
Multiply -4 times 2.
x=\frac{-10±\sqrt{100+4800}}{2\times 2}
Multiply -8 times -600.
x=\frac{-10±\sqrt{4900}}{2\times 2}
Add 100 to 4800.
x=\frac{-10±70}{2\times 2}
Take the square root of 4900.
x=\frac{-10±70}{4}
Multiply 2 times 2.
x=\frac{60}{4}
Now solve the equation x=\frac{-10±70}{4} when ± is plus. Add -10 to 70.
x=15
Divide 60 by 4.
x=-\frac{80}{4}
Now solve the equation x=\frac{-10±70}{4} when ± is minus. Subtract 70 from -10.
x=-20
Divide -80 by 4.
x=15 x=-20
The equation is now solved.
x^{2}+x^{2}+10x+25=25^{2}
Use binomial theorem \left(a+b\right)^{2}=a^{2}+2ab+b^{2} to expand \left(x+5\right)^{2}.
2x^{2}+10x+25=25^{2}
Combine x^{2} and x^{2} to get 2x^{2}.
2x^{2}+10x+25=625
Calculate 25 to the power of 2 and get 625.
2x^{2}+10x=625-25
Subtract 25 from both sides.
2x^{2}+10x=600
Subtract 25 from 625 to get 600.
\frac{2x^{2}+10x}{2}=\frac{600}{2}
Divide both sides by 2.
x^{2}+\frac{10}{2}x=\frac{600}{2}
Dividing by 2 undoes the multiplication by 2.
x^{2}+5x=\frac{600}{2}
Divide 10 by 2.
x^{2}+5x=300
Divide 600 by 2.
x^{2}+5x+\left(\frac{5}{2}\right)^{2}=300+\left(\frac{5}{2}\right)^{2}
Divide 5, the coefficient of the x term, by 2 to get \frac{5}{2}. Then add the square of \frac{5}{2} to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}+5x+\frac{25}{4}=300+\frac{25}{4}
Square \frac{5}{2} by squaring both the numerator and the denominator of the fraction.
x^{2}+5x+\frac{25}{4}=\frac{1225}{4}
Add 300 to \frac{25}{4}.
\left(x+\frac{5}{2}\right)^{2}=\frac{1225}{4}
Factor x^{2}+5x+\frac{25}{4}. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x+\frac{5}{2}\right)^{2}}=\sqrt{\frac{1225}{4}}
Take the square root of both sides of the equation.
x+\frac{5}{2}=\frac{35}{2} x+\frac{5}{2}=-\frac{35}{2}
Simplify.
x=15 x=-20
Subtract \frac{5}{2} from both sides of the equation.