Solve for x (complex solution)
x=\frac{-395+\sqrt{154465}i}{2}\approx -197.5+196.510177853i
x=\frac{-\sqrt{154465}i-395}{2}\approx -197.5-196.510177853i
Graph
Share
Copied to clipboard
x^{2}+x^{2}+790x+156025=780
Use binomial theorem \left(a+b\right)^{2}=a^{2}+2ab+b^{2} to expand \left(x+395\right)^{2}.
2x^{2}+790x+156025=780
Combine x^{2} and x^{2} to get 2x^{2}.
2x^{2}+790x+156025-780=0
Subtract 780 from both sides.
2x^{2}+790x+155245=0
Subtract 780 from 156025 to get 155245.
x=\frac{-790±\sqrt{790^{2}-4\times 2\times 155245}}{2\times 2}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 2 for a, 790 for b, and 155245 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-790±\sqrt{624100-4\times 2\times 155245}}{2\times 2}
Square 790.
x=\frac{-790±\sqrt{624100-8\times 155245}}{2\times 2}
Multiply -4 times 2.
x=\frac{-790±\sqrt{624100-1241960}}{2\times 2}
Multiply -8 times 155245.
x=\frac{-790±\sqrt{-617860}}{2\times 2}
Add 624100 to -1241960.
x=\frac{-790±2\sqrt{154465}i}{2\times 2}
Take the square root of -617860.
x=\frac{-790±2\sqrt{154465}i}{4}
Multiply 2 times 2.
x=\frac{-790+2\sqrt{154465}i}{4}
Now solve the equation x=\frac{-790±2\sqrt{154465}i}{4} when ± is plus. Add -790 to 2i\sqrt{154465}.
x=\frac{-395+\sqrt{154465}i}{2}
Divide -790+2i\sqrt{154465} by 4.
x=\frac{-2\sqrt{154465}i-790}{4}
Now solve the equation x=\frac{-790±2\sqrt{154465}i}{4} when ± is minus. Subtract 2i\sqrt{154465} from -790.
x=\frac{-\sqrt{154465}i-395}{2}
Divide -790-2i\sqrt{154465} by 4.
x=\frac{-395+\sqrt{154465}i}{2} x=\frac{-\sqrt{154465}i-395}{2}
The equation is now solved.
x^{2}+x^{2}+790x+156025=780
Use binomial theorem \left(a+b\right)^{2}=a^{2}+2ab+b^{2} to expand \left(x+395\right)^{2}.
2x^{2}+790x+156025=780
Combine x^{2} and x^{2} to get 2x^{2}.
2x^{2}+790x=780-156025
Subtract 156025 from both sides.
2x^{2}+790x=-155245
Subtract 156025 from 780 to get -155245.
\frac{2x^{2}+790x}{2}=-\frac{155245}{2}
Divide both sides by 2.
x^{2}+\frac{790}{2}x=-\frac{155245}{2}
Dividing by 2 undoes the multiplication by 2.
x^{2}+395x=-\frac{155245}{2}
Divide 790 by 2.
x^{2}+395x+\left(\frac{395}{2}\right)^{2}=-\frac{155245}{2}+\left(\frac{395}{2}\right)^{2}
Divide 395, the coefficient of the x term, by 2 to get \frac{395}{2}. Then add the square of \frac{395}{2} to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}+395x+\frac{156025}{4}=-\frac{155245}{2}+\frac{156025}{4}
Square \frac{395}{2} by squaring both the numerator and the denominator of the fraction.
x^{2}+395x+\frac{156025}{4}=-\frac{154465}{4}
Add -\frac{155245}{2} to \frac{156025}{4} by finding a common denominator and adding the numerators. Then reduce the fraction to lowest terms if possible.
\left(x+\frac{395}{2}\right)^{2}=-\frac{154465}{4}
Factor x^{2}+395x+\frac{156025}{4}. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x+\frac{395}{2}\right)^{2}}=\sqrt{-\frac{154465}{4}}
Take the square root of both sides of the equation.
x+\frac{395}{2}=\frac{\sqrt{154465}i}{2} x+\frac{395}{2}=-\frac{\sqrt{154465}i}{2}
Simplify.
x=\frac{-395+\sqrt{154465}i}{2} x=\frac{-\sqrt{154465}i-395}{2}
Subtract \frac{395}{2} from both sides of the equation.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}