Solve for x
x = \frac{4}{3} = 1\frac{1}{3} \approx 1.333333333
Graph
Share
Copied to clipboard
x^{2}+x^{2}+2x+1=\left(2x-1\right)\left(x+3\right)
Use binomial theorem \left(a+b\right)^{2}=a^{2}+2ab+b^{2} to expand \left(x+1\right)^{2}.
2x^{2}+2x+1=\left(2x-1\right)\left(x+3\right)
Combine x^{2} and x^{2} to get 2x^{2}.
2x^{2}+2x+1=2x^{2}+5x-3
Use the distributive property to multiply 2x-1 by x+3 and combine like terms.
2x^{2}+2x+1-2x^{2}=5x-3
Subtract 2x^{2} from both sides.
2x+1=5x-3
Combine 2x^{2} and -2x^{2} to get 0.
2x+1-5x=-3
Subtract 5x from both sides.
-3x+1=-3
Combine 2x and -5x to get -3x.
-3x=-3-1
Subtract 1 from both sides.
-3x=-4
Subtract 1 from -3 to get -4.
x=\frac{-4}{-3}
Divide both sides by -3.
x=\frac{4}{3}
Fraction \frac{-4}{-3} can be simplified to \frac{4}{3} by removing the negative sign from both the numerator and the denominator.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}