Solve for u
u=-x-1-\frac{1}{x}
x\neq 0
Solve for x (complex solution)
x=\frac{\sqrt{\left(u-1\right)\left(u+3\right)}-u-1}{2}
x=\frac{-\sqrt{\left(u-1\right)\left(u+3\right)}-u-1}{2}
Solve for x
x=\frac{\sqrt{\left(u-1\right)\left(u+3\right)}-u-1}{2}
x=\frac{-\sqrt{\left(u-1\right)\left(u+3\right)}-u-1}{2}\text{, }u\leq -3\text{ or }u\geq 1
Graph
Share
Copied to clipboard
x^{2}+ux+x+1=0
Use the distributive property to multiply u+1 by x.
ux+x+1=-x^{2}
Subtract x^{2} from both sides. Anything subtracted from zero gives its negation.
ux+1=-x^{2}-x
Subtract x from both sides.
ux=-x^{2}-x-1
Subtract 1 from both sides.
xu=-x^{2}-x-1
The equation is in standard form.
\frac{xu}{x}=\frac{-x^{2}-x-1}{x}
Divide both sides by x.
u=\frac{-x^{2}-x-1}{x}
Dividing by x undoes the multiplication by x.
u=-x-1-\frac{1}{x}
Divide -x^{2}-x-1 by x.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}