Solve for n (complex solution)
\left\{\begin{matrix}\\n=-x\text{, }&\text{unconditionally}\\n\in \mathrm{C}\text{, }&x=-1\end{matrix}\right.
Solve for n
\left\{\begin{matrix}\\n=-x\text{, }&\text{unconditionally}\\n\in \mathrm{R}\text{, }&x=-1\end{matrix}\right.
Solve for x
x=-n
x=-1
Graph
Share
Copied to clipboard
x^{2}+nx+x+n=0
Use the distributive property to multiply n+1 by x.
nx+x+n=-x^{2}
Subtract x^{2} from both sides. Anything subtracted from zero gives its negation.
nx+n=-x^{2}-x
Subtract x from both sides.
\left(x+1\right)n=-x^{2}-x
Combine all terms containing n.
\frac{\left(x+1\right)n}{x+1}=-\frac{x\left(x+1\right)}{x+1}
Divide both sides by 1+x.
n=-\frac{x\left(x+1\right)}{x+1}
Dividing by 1+x undoes the multiplication by 1+x.
n=-x
Divide -x\left(1+x\right) by 1+x.
x^{2}+nx+x+n=0
Use the distributive property to multiply n+1 by x.
nx+x+n=-x^{2}
Subtract x^{2} from both sides. Anything subtracted from zero gives its negation.
nx+n=-x^{2}-x
Subtract x from both sides.
\left(x+1\right)n=-x^{2}-x
Combine all terms containing n.
\frac{\left(x+1\right)n}{x+1}=-\frac{x\left(x+1\right)}{x+1}
Divide both sides by 1+x.
n=-\frac{x\left(x+1\right)}{x+1}
Dividing by 1+x undoes the multiplication by 1+x.
n=-x
Divide -x\left(1+x\right) by 1+x.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}