Solve for x
x=25
x=60
Graph
Share
Copied to clipboard
x^{2}+7225-170x+x^{2}=65^{2}
Use binomial theorem \left(a-b\right)^{2}=a^{2}-2ab+b^{2} to expand \left(85-x\right)^{2}.
2x^{2}+7225-170x=65^{2}
Combine x^{2} and x^{2} to get 2x^{2}.
2x^{2}+7225-170x=4225
Calculate 65 to the power of 2 and get 4225.
2x^{2}+7225-170x-4225=0
Subtract 4225 from both sides.
2x^{2}+3000-170x=0
Subtract 4225 from 7225 to get 3000.
2x^{2}-170x+3000=0
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
x=\frac{-\left(-170\right)±\sqrt{\left(-170\right)^{2}-4\times 2\times 3000}}{2\times 2}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 2 for a, -170 for b, and 3000 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-\left(-170\right)±\sqrt{28900-4\times 2\times 3000}}{2\times 2}
Square -170.
x=\frac{-\left(-170\right)±\sqrt{28900-8\times 3000}}{2\times 2}
Multiply -4 times 2.
x=\frac{-\left(-170\right)±\sqrt{28900-24000}}{2\times 2}
Multiply -8 times 3000.
x=\frac{-\left(-170\right)±\sqrt{4900}}{2\times 2}
Add 28900 to -24000.
x=\frac{-\left(-170\right)±70}{2\times 2}
Take the square root of 4900.
x=\frac{170±70}{2\times 2}
The opposite of -170 is 170.
x=\frac{170±70}{4}
Multiply 2 times 2.
x=\frac{240}{4}
Now solve the equation x=\frac{170±70}{4} when ± is plus. Add 170 to 70.
x=60
Divide 240 by 4.
x=\frac{100}{4}
Now solve the equation x=\frac{170±70}{4} when ± is minus. Subtract 70 from 170.
x=25
Divide 100 by 4.
x=60 x=25
The equation is now solved.
x^{2}+7225-170x+x^{2}=65^{2}
Use binomial theorem \left(a-b\right)^{2}=a^{2}-2ab+b^{2} to expand \left(85-x\right)^{2}.
2x^{2}+7225-170x=65^{2}
Combine x^{2} and x^{2} to get 2x^{2}.
2x^{2}+7225-170x=4225
Calculate 65 to the power of 2 and get 4225.
2x^{2}-170x=4225-7225
Subtract 7225 from both sides.
2x^{2}-170x=-3000
Subtract 7225 from 4225 to get -3000.
\frac{2x^{2}-170x}{2}=-\frac{3000}{2}
Divide both sides by 2.
x^{2}+\left(-\frac{170}{2}\right)x=-\frac{3000}{2}
Dividing by 2 undoes the multiplication by 2.
x^{2}-85x=-\frac{3000}{2}
Divide -170 by 2.
x^{2}-85x=-1500
Divide -3000 by 2.
x^{2}-85x+\left(-\frac{85}{2}\right)^{2}=-1500+\left(-\frac{85}{2}\right)^{2}
Divide -85, the coefficient of the x term, by 2 to get -\frac{85}{2}. Then add the square of -\frac{85}{2} to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}-85x+\frac{7225}{4}=-1500+\frac{7225}{4}
Square -\frac{85}{2} by squaring both the numerator and the denominator of the fraction.
x^{2}-85x+\frac{7225}{4}=\frac{1225}{4}
Add -1500 to \frac{7225}{4}.
\left(x-\frac{85}{2}\right)^{2}=\frac{1225}{4}
Factor x^{2}-85x+\frac{7225}{4}. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x-\frac{85}{2}\right)^{2}}=\sqrt{\frac{1225}{4}}
Take the square root of both sides of the equation.
x-\frac{85}{2}=\frac{35}{2} x-\frac{85}{2}=-\frac{35}{2}
Simplify.
x=60 x=25
Add \frac{85}{2} to both sides of the equation.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}