Skip to main content
Solve for x
Tick mark Image
Graph

Similar Problems from Web Search

Share

x^{2}+49+14x+x^{2}=\left(9+x\right)^{2}
Use binomial theorem \left(a+b\right)^{2}=a^{2}+2ab+b^{2} to expand \left(7+x\right)^{2}.
2x^{2}+49+14x=\left(9+x\right)^{2}
Combine x^{2} and x^{2} to get 2x^{2}.
2x^{2}+49+14x=81+18x+x^{2}
Use binomial theorem \left(a+b\right)^{2}=a^{2}+2ab+b^{2} to expand \left(9+x\right)^{2}.
2x^{2}+49+14x-81=18x+x^{2}
Subtract 81 from both sides.
2x^{2}-32+14x=18x+x^{2}
Subtract 81 from 49 to get -32.
2x^{2}-32+14x-18x=x^{2}
Subtract 18x from both sides.
2x^{2}-32-4x=x^{2}
Combine 14x and -18x to get -4x.
2x^{2}-32-4x-x^{2}=0
Subtract x^{2} from both sides.
x^{2}-32-4x=0
Combine 2x^{2} and -x^{2} to get x^{2}.
x^{2}-4x-32=0
Rearrange the polynomial to put it in standard form. Place the terms in order from highest to lowest power.
a+b=-4 ab=-32
To solve the equation, factor x^{2}-4x-32 using formula x^{2}+\left(a+b\right)x+ab=\left(x+a\right)\left(x+b\right). To find a and b, set up a system to be solved.
1,-32 2,-16 4,-8
Since ab is negative, a and b have the opposite signs. Since a+b is negative, the negative number has greater absolute value than the positive. List all such integer pairs that give product -32.
1-32=-31 2-16=-14 4-8=-4
Calculate the sum for each pair.
a=-8 b=4
The solution is the pair that gives sum -4.
\left(x-8\right)\left(x+4\right)
Rewrite factored expression \left(x+a\right)\left(x+b\right) using the obtained values.
x=8 x=-4
To find equation solutions, solve x-8=0 and x+4=0.
x^{2}+49+14x+x^{2}=\left(9+x\right)^{2}
Use binomial theorem \left(a+b\right)^{2}=a^{2}+2ab+b^{2} to expand \left(7+x\right)^{2}.
2x^{2}+49+14x=\left(9+x\right)^{2}
Combine x^{2} and x^{2} to get 2x^{2}.
2x^{2}+49+14x=81+18x+x^{2}
Use binomial theorem \left(a+b\right)^{2}=a^{2}+2ab+b^{2} to expand \left(9+x\right)^{2}.
2x^{2}+49+14x-81=18x+x^{2}
Subtract 81 from both sides.
2x^{2}-32+14x=18x+x^{2}
Subtract 81 from 49 to get -32.
2x^{2}-32+14x-18x=x^{2}
Subtract 18x from both sides.
2x^{2}-32-4x=x^{2}
Combine 14x and -18x to get -4x.
2x^{2}-32-4x-x^{2}=0
Subtract x^{2} from both sides.
x^{2}-32-4x=0
Combine 2x^{2} and -x^{2} to get x^{2}.
x^{2}-4x-32=0
Rearrange the polynomial to put it in standard form. Place the terms in order from highest to lowest power.
a+b=-4 ab=1\left(-32\right)=-32
To solve the equation, factor the left hand side by grouping. First, left hand side needs to be rewritten as x^{2}+ax+bx-32. To find a and b, set up a system to be solved.
1,-32 2,-16 4,-8
Since ab is negative, a and b have the opposite signs. Since a+b is negative, the negative number has greater absolute value than the positive. List all such integer pairs that give product -32.
1-32=-31 2-16=-14 4-8=-4
Calculate the sum for each pair.
a=-8 b=4
The solution is the pair that gives sum -4.
\left(x^{2}-8x\right)+\left(4x-32\right)
Rewrite x^{2}-4x-32 as \left(x^{2}-8x\right)+\left(4x-32\right).
x\left(x-8\right)+4\left(x-8\right)
Factor out x in the first and 4 in the second group.
\left(x-8\right)\left(x+4\right)
Factor out common term x-8 by using distributive property.
x=8 x=-4
To find equation solutions, solve x-8=0 and x+4=0.
x^{2}+49+14x+x^{2}=\left(9+x\right)^{2}
Use binomial theorem \left(a+b\right)^{2}=a^{2}+2ab+b^{2} to expand \left(7+x\right)^{2}.
2x^{2}+49+14x=\left(9+x\right)^{2}
Combine x^{2} and x^{2} to get 2x^{2}.
2x^{2}+49+14x=81+18x+x^{2}
Use binomial theorem \left(a+b\right)^{2}=a^{2}+2ab+b^{2} to expand \left(9+x\right)^{2}.
2x^{2}+49+14x-81=18x+x^{2}
Subtract 81 from both sides.
2x^{2}-32+14x=18x+x^{2}
Subtract 81 from 49 to get -32.
2x^{2}-32+14x-18x=x^{2}
Subtract 18x from both sides.
2x^{2}-32-4x=x^{2}
Combine 14x and -18x to get -4x.
2x^{2}-32-4x-x^{2}=0
Subtract x^{2} from both sides.
x^{2}-32-4x=0
Combine 2x^{2} and -x^{2} to get x^{2}.
x^{2}-4x-32=0
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
x=\frac{-\left(-4\right)±\sqrt{\left(-4\right)^{2}-4\left(-32\right)}}{2}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 1 for a, -4 for b, and -32 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-\left(-4\right)±\sqrt{16-4\left(-32\right)}}{2}
Square -4.
x=\frac{-\left(-4\right)±\sqrt{16+128}}{2}
Multiply -4 times -32.
x=\frac{-\left(-4\right)±\sqrt{144}}{2}
Add 16 to 128.
x=\frac{-\left(-4\right)±12}{2}
Take the square root of 144.
x=\frac{4±12}{2}
The opposite of -4 is 4.
x=\frac{16}{2}
Now solve the equation x=\frac{4±12}{2} when ± is plus. Add 4 to 12.
x=8
Divide 16 by 2.
x=-\frac{8}{2}
Now solve the equation x=\frac{4±12}{2} when ± is minus. Subtract 12 from 4.
x=-4
Divide -8 by 2.
x=8 x=-4
The equation is now solved.
x^{2}+49+14x+x^{2}=\left(9+x\right)^{2}
Use binomial theorem \left(a+b\right)^{2}=a^{2}+2ab+b^{2} to expand \left(7+x\right)^{2}.
2x^{2}+49+14x=\left(9+x\right)^{2}
Combine x^{2} and x^{2} to get 2x^{2}.
2x^{2}+49+14x=81+18x+x^{2}
Use binomial theorem \left(a+b\right)^{2}=a^{2}+2ab+b^{2} to expand \left(9+x\right)^{2}.
2x^{2}+49+14x-18x=81+x^{2}
Subtract 18x from both sides.
2x^{2}+49-4x=81+x^{2}
Combine 14x and -18x to get -4x.
2x^{2}+49-4x-x^{2}=81
Subtract x^{2} from both sides.
x^{2}+49-4x=81
Combine 2x^{2} and -x^{2} to get x^{2}.
x^{2}-4x=81-49
Subtract 49 from both sides.
x^{2}-4x=32
Subtract 49 from 81 to get 32.
x^{2}-4x+\left(-2\right)^{2}=32+\left(-2\right)^{2}
Divide -4, the coefficient of the x term, by 2 to get -2. Then add the square of -2 to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}-4x+4=32+4
Square -2.
x^{2}-4x+4=36
Add 32 to 4.
\left(x-2\right)^{2}=36
Factor x^{2}-4x+4. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x-2\right)^{2}}=\sqrt{36}
Take the square root of both sides of the equation.
x-2=6 x-2=-6
Simplify.
x=8 x=-4
Add 2 to both sides of the equation.