Solve for x (complex solution)
x=\frac{\sqrt{4310}i}{2}+34\approx 34+32.825295124i
x=-\frac{\sqrt{4310}i}{2}+34\approx 34-32.825295124i
Graph
Share
Copied to clipboard
x^{2}+4624-136x+x^{2}=157
Use binomial theorem \left(a-b\right)^{2}=a^{2}-2ab+b^{2} to expand \left(68-x\right)^{2}.
2x^{2}+4624-136x=157
Combine x^{2} and x^{2} to get 2x^{2}.
2x^{2}+4624-136x-157=0
Subtract 157 from both sides.
2x^{2}+4467-136x=0
Subtract 157 from 4624 to get 4467.
2x^{2}-136x+4467=0
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
x=\frac{-\left(-136\right)±\sqrt{\left(-136\right)^{2}-4\times 2\times 4467}}{2\times 2}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 2 for a, -136 for b, and 4467 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-\left(-136\right)±\sqrt{18496-4\times 2\times 4467}}{2\times 2}
Square -136.
x=\frac{-\left(-136\right)±\sqrt{18496-8\times 4467}}{2\times 2}
Multiply -4 times 2.
x=\frac{-\left(-136\right)±\sqrt{18496-35736}}{2\times 2}
Multiply -8 times 4467.
x=\frac{-\left(-136\right)±\sqrt{-17240}}{2\times 2}
Add 18496 to -35736.
x=\frac{-\left(-136\right)±2\sqrt{4310}i}{2\times 2}
Take the square root of -17240.
x=\frac{136±2\sqrt{4310}i}{2\times 2}
The opposite of -136 is 136.
x=\frac{136±2\sqrt{4310}i}{4}
Multiply 2 times 2.
x=\frac{136+2\sqrt{4310}i}{4}
Now solve the equation x=\frac{136±2\sqrt{4310}i}{4} when ± is plus. Add 136 to 2i\sqrt{4310}.
x=\frac{\sqrt{4310}i}{2}+34
Divide 136+2i\sqrt{4310} by 4.
x=\frac{-2\sqrt{4310}i+136}{4}
Now solve the equation x=\frac{136±2\sqrt{4310}i}{4} when ± is minus. Subtract 2i\sqrt{4310} from 136.
x=-\frac{\sqrt{4310}i}{2}+34
Divide 136-2i\sqrt{4310} by 4.
x=\frac{\sqrt{4310}i}{2}+34 x=-\frac{\sqrt{4310}i}{2}+34
The equation is now solved.
x^{2}+4624-136x+x^{2}=157
Use binomial theorem \left(a-b\right)^{2}=a^{2}-2ab+b^{2} to expand \left(68-x\right)^{2}.
2x^{2}+4624-136x=157
Combine x^{2} and x^{2} to get 2x^{2}.
2x^{2}-136x=157-4624
Subtract 4624 from both sides.
2x^{2}-136x=-4467
Subtract 4624 from 157 to get -4467.
\frac{2x^{2}-136x}{2}=-\frac{4467}{2}
Divide both sides by 2.
x^{2}+\left(-\frac{136}{2}\right)x=-\frac{4467}{2}
Dividing by 2 undoes the multiplication by 2.
x^{2}-68x=-\frac{4467}{2}
Divide -136 by 2.
x^{2}-68x+\left(-34\right)^{2}=-\frac{4467}{2}+\left(-34\right)^{2}
Divide -68, the coefficient of the x term, by 2 to get -34. Then add the square of -34 to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}-68x+1156=-\frac{4467}{2}+1156
Square -34.
x^{2}-68x+1156=-\frac{2155}{2}
Add -\frac{4467}{2} to 1156.
\left(x-34\right)^{2}=-\frac{2155}{2}
Factor x^{2}-68x+1156. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x-34\right)^{2}}=\sqrt{-\frac{2155}{2}}
Take the square root of both sides of the equation.
x-34=\frac{\sqrt{4310}i}{2} x-34=-\frac{\sqrt{4310}i}{2}
Simplify.
x=\frac{\sqrt{4310}i}{2}+34 x=-\frac{\sqrt{4310}i}{2}+34
Add 34 to both sides of the equation.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}