Solve for x
x=4
Graph
Share
Copied to clipboard
x^{2}+36-36x+9x^{2}+4x+16\left(6-3x\right)+28=0
Use binomial theorem \left(a-b\right)^{2}=a^{2}-2ab+b^{2} to expand \left(6-3x\right)^{2}.
10x^{2}+36-36x+4x+16\left(6-3x\right)+28=0
Combine x^{2} and 9x^{2} to get 10x^{2}.
10x^{2}+36-32x+16\left(6-3x\right)+28=0
Combine -36x and 4x to get -32x.
10x^{2}+36-32x+96-48x+28=0
Use the distributive property to multiply 16 by 6-3x.
10x^{2}+132-32x-48x+28=0
Add 36 and 96 to get 132.
10x^{2}+132-80x+28=0
Combine -32x and -48x to get -80x.
10x^{2}+160-80x=0
Add 132 and 28 to get 160.
10x^{2}-80x+160=0
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
x=\frac{-\left(-80\right)±\sqrt{\left(-80\right)^{2}-4\times 10\times 160}}{2\times 10}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 10 for a, -80 for b, and 160 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-\left(-80\right)±\sqrt{6400-4\times 10\times 160}}{2\times 10}
Square -80.
x=\frac{-\left(-80\right)±\sqrt{6400-40\times 160}}{2\times 10}
Multiply -4 times 10.
x=\frac{-\left(-80\right)±\sqrt{6400-6400}}{2\times 10}
Multiply -40 times 160.
x=\frac{-\left(-80\right)±\sqrt{0}}{2\times 10}
Add 6400 to -6400.
x=-\frac{-80}{2\times 10}
Take the square root of 0.
x=\frac{80}{2\times 10}
The opposite of -80 is 80.
x=\frac{80}{20}
Multiply 2 times 10.
x=4
Divide 80 by 20.
x^{2}+36-36x+9x^{2}+4x+16\left(6-3x\right)+28=0
Use binomial theorem \left(a-b\right)^{2}=a^{2}-2ab+b^{2} to expand \left(6-3x\right)^{2}.
10x^{2}+36-36x+4x+16\left(6-3x\right)+28=0
Combine x^{2} and 9x^{2} to get 10x^{2}.
10x^{2}+36-32x+16\left(6-3x\right)+28=0
Combine -36x and 4x to get -32x.
10x^{2}+36-32x+96-48x+28=0
Use the distributive property to multiply 16 by 6-3x.
10x^{2}+132-32x-48x+28=0
Add 36 and 96 to get 132.
10x^{2}+132-80x+28=0
Combine -32x and -48x to get -80x.
10x^{2}+160-80x=0
Add 132 and 28 to get 160.
10x^{2}-80x=-160
Subtract 160 from both sides. Anything subtracted from zero gives its negation.
\frac{10x^{2}-80x}{10}=-\frac{160}{10}
Divide both sides by 10.
x^{2}+\left(-\frac{80}{10}\right)x=-\frac{160}{10}
Dividing by 10 undoes the multiplication by 10.
x^{2}-8x=-\frac{160}{10}
Divide -80 by 10.
x^{2}-8x=-16
Divide -160 by 10.
x^{2}-8x+\left(-4\right)^{2}=-16+\left(-4\right)^{2}
Divide -8, the coefficient of the x term, by 2 to get -4. Then add the square of -4 to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}-8x+16=-16+16
Square -4.
x^{2}-8x+16=0
Add -16 to 16.
\left(x-4\right)^{2}=0
Factor x^{2}-8x+16. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x-4\right)^{2}}=\sqrt{0}
Take the square root of both sides of the equation.
x-4=0 x-4=0
Simplify.
x=4 x=4
Add 4 to both sides of the equation.
x=4
The equation is now solved. Solutions are the same.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}