Skip to main content
Solve for x
Tick mark Image
Graph

Similar Problems from Web Search

Share

x^{2}+25-10x+x^{2}=\left(5-2x\right)^{2}
Use binomial theorem \left(a-b\right)^{2}=a^{2}-2ab+b^{2} to expand \left(5-x\right)^{2}.
2x^{2}+25-10x=\left(5-2x\right)^{2}
Combine x^{2} and x^{2} to get 2x^{2}.
2x^{2}+25-10x=25-20x+4x^{2}
Use binomial theorem \left(a-b\right)^{2}=a^{2}-2ab+b^{2} to expand \left(5-2x\right)^{2}.
2x^{2}+25-10x-25=-20x+4x^{2}
Subtract 25 from both sides.
2x^{2}-10x=-20x+4x^{2}
Subtract 25 from 25 to get 0.
2x^{2}-10x+20x=4x^{2}
Add 20x to both sides.
2x^{2}+10x=4x^{2}
Combine -10x and 20x to get 10x.
2x^{2}+10x-4x^{2}=0
Subtract 4x^{2} from both sides.
-2x^{2}+10x=0
Combine 2x^{2} and -4x^{2} to get -2x^{2}.
x\left(-2x+10\right)=0
Factor out x.
x=0 x=5
To find equation solutions, solve x=0 and -2x+10=0.
x^{2}+25-10x+x^{2}=\left(5-2x\right)^{2}
Use binomial theorem \left(a-b\right)^{2}=a^{2}-2ab+b^{2} to expand \left(5-x\right)^{2}.
2x^{2}+25-10x=\left(5-2x\right)^{2}
Combine x^{2} and x^{2} to get 2x^{2}.
2x^{2}+25-10x=25-20x+4x^{2}
Use binomial theorem \left(a-b\right)^{2}=a^{2}-2ab+b^{2} to expand \left(5-2x\right)^{2}.
2x^{2}+25-10x-25=-20x+4x^{2}
Subtract 25 from both sides.
2x^{2}-10x=-20x+4x^{2}
Subtract 25 from 25 to get 0.
2x^{2}-10x+20x=4x^{2}
Add 20x to both sides.
2x^{2}+10x=4x^{2}
Combine -10x and 20x to get 10x.
2x^{2}+10x-4x^{2}=0
Subtract 4x^{2} from both sides.
-2x^{2}+10x=0
Combine 2x^{2} and -4x^{2} to get -2x^{2}.
x=\frac{-10±\sqrt{10^{2}}}{2\left(-2\right)}
This equation is in standard form: ax^{2}+bx+c=0. Substitute -2 for a, 10 for b, and 0 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-10±10}{2\left(-2\right)}
Take the square root of 10^{2}.
x=\frac{-10±10}{-4}
Multiply 2 times -2.
x=\frac{0}{-4}
Now solve the equation x=\frac{-10±10}{-4} when ± is plus. Add -10 to 10.
x=0
Divide 0 by -4.
x=-\frac{20}{-4}
Now solve the equation x=\frac{-10±10}{-4} when ± is minus. Subtract 10 from -10.
x=5
Divide -20 by -4.
x=0 x=5
The equation is now solved.
x^{2}+25-10x+x^{2}=\left(5-2x\right)^{2}
Use binomial theorem \left(a-b\right)^{2}=a^{2}-2ab+b^{2} to expand \left(5-x\right)^{2}.
2x^{2}+25-10x=\left(5-2x\right)^{2}
Combine x^{2} and x^{2} to get 2x^{2}.
2x^{2}+25-10x=25-20x+4x^{2}
Use binomial theorem \left(a-b\right)^{2}=a^{2}-2ab+b^{2} to expand \left(5-2x\right)^{2}.
2x^{2}+25-10x+20x=25+4x^{2}
Add 20x to both sides.
2x^{2}+25+10x=25+4x^{2}
Combine -10x and 20x to get 10x.
2x^{2}+25+10x-4x^{2}=25
Subtract 4x^{2} from both sides.
-2x^{2}+25+10x=25
Combine 2x^{2} and -4x^{2} to get -2x^{2}.
-2x^{2}+10x=25-25
Subtract 25 from both sides.
-2x^{2}+10x=0
Subtract 25 from 25 to get 0.
\frac{-2x^{2}+10x}{-2}=\frac{0}{-2}
Divide both sides by -2.
x^{2}+\frac{10}{-2}x=\frac{0}{-2}
Dividing by -2 undoes the multiplication by -2.
x^{2}-5x=\frac{0}{-2}
Divide 10 by -2.
x^{2}-5x=0
Divide 0 by -2.
x^{2}-5x+\left(-\frac{5}{2}\right)^{2}=\left(-\frac{5}{2}\right)^{2}
Divide -5, the coefficient of the x term, by 2 to get -\frac{5}{2}. Then add the square of -\frac{5}{2} to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}-5x+\frac{25}{4}=\frac{25}{4}
Square -\frac{5}{2} by squaring both the numerator and the denominator of the fraction.
\left(x-\frac{5}{2}\right)^{2}=\frac{25}{4}
Factor x^{2}-5x+\frac{25}{4}. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x-\frac{5}{2}\right)^{2}}=\sqrt{\frac{25}{4}}
Take the square root of both sides of the equation.
x-\frac{5}{2}=\frac{5}{2} x-\frac{5}{2}=-\frac{5}{2}
Simplify.
x=5 x=0
Add \frac{5}{2} to both sides of the equation.