Solve for x (complex solution)
x=\frac{160+\sqrt{614}i}{17}\approx 9.411764706+1.457589611i
x=\frac{-\sqrt{614}i+160}{17}\approx 9.411764706-1.457589611i
Graph
Share
Copied to clipboard
x^{2}+1600-320x+16x^{2}=58
Use binomial theorem \left(a-b\right)^{2}=a^{2}-2ab+b^{2} to expand \left(40-4x\right)^{2}.
17x^{2}+1600-320x=58
Combine x^{2} and 16x^{2} to get 17x^{2}.
17x^{2}+1600-320x-58=0
Subtract 58 from both sides.
17x^{2}+1542-320x=0
Subtract 58 from 1600 to get 1542.
17x^{2}-320x+1542=0
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
x=\frac{-\left(-320\right)±\sqrt{\left(-320\right)^{2}-4\times 17\times 1542}}{2\times 17}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 17 for a, -320 for b, and 1542 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-\left(-320\right)±\sqrt{102400-4\times 17\times 1542}}{2\times 17}
Square -320.
x=\frac{-\left(-320\right)±\sqrt{102400-68\times 1542}}{2\times 17}
Multiply -4 times 17.
x=\frac{-\left(-320\right)±\sqrt{102400-104856}}{2\times 17}
Multiply -68 times 1542.
x=\frac{-\left(-320\right)±\sqrt{-2456}}{2\times 17}
Add 102400 to -104856.
x=\frac{-\left(-320\right)±2\sqrt{614}i}{2\times 17}
Take the square root of -2456.
x=\frac{320±2\sqrt{614}i}{2\times 17}
The opposite of -320 is 320.
x=\frac{320±2\sqrt{614}i}{34}
Multiply 2 times 17.
x=\frac{320+2\sqrt{614}i}{34}
Now solve the equation x=\frac{320±2\sqrt{614}i}{34} when ± is plus. Add 320 to 2i\sqrt{614}.
x=\frac{160+\sqrt{614}i}{17}
Divide 320+2i\sqrt{614} by 34.
x=\frac{-2\sqrt{614}i+320}{34}
Now solve the equation x=\frac{320±2\sqrt{614}i}{34} when ± is minus. Subtract 2i\sqrt{614} from 320.
x=\frac{-\sqrt{614}i+160}{17}
Divide 320-2i\sqrt{614} by 34.
x=\frac{160+\sqrt{614}i}{17} x=\frac{-\sqrt{614}i+160}{17}
The equation is now solved.
x^{2}+1600-320x+16x^{2}=58
Use binomial theorem \left(a-b\right)^{2}=a^{2}-2ab+b^{2} to expand \left(40-4x\right)^{2}.
17x^{2}+1600-320x=58
Combine x^{2} and 16x^{2} to get 17x^{2}.
17x^{2}-320x=58-1600
Subtract 1600 from both sides.
17x^{2}-320x=-1542
Subtract 1600 from 58 to get -1542.
\frac{17x^{2}-320x}{17}=-\frac{1542}{17}
Divide both sides by 17.
x^{2}-\frac{320}{17}x=-\frac{1542}{17}
Dividing by 17 undoes the multiplication by 17.
x^{2}-\frac{320}{17}x+\left(-\frac{160}{17}\right)^{2}=-\frac{1542}{17}+\left(-\frac{160}{17}\right)^{2}
Divide -\frac{320}{17}, the coefficient of the x term, by 2 to get -\frac{160}{17}. Then add the square of -\frac{160}{17} to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}-\frac{320}{17}x+\frac{25600}{289}=-\frac{1542}{17}+\frac{25600}{289}
Square -\frac{160}{17} by squaring both the numerator and the denominator of the fraction.
x^{2}-\frac{320}{17}x+\frac{25600}{289}=-\frac{614}{289}
Add -\frac{1542}{17} to \frac{25600}{289} by finding a common denominator and adding the numerators. Then reduce the fraction to lowest terms if possible.
\left(x-\frac{160}{17}\right)^{2}=-\frac{614}{289}
Factor x^{2}-\frac{320}{17}x+\frac{25600}{289}. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x-\frac{160}{17}\right)^{2}}=\sqrt{-\frac{614}{289}}
Take the square root of both sides of the equation.
x-\frac{160}{17}=\frac{\sqrt{614}i}{17} x-\frac{160}{17}=-\frac{\sqrt{614}i}{17}
Simplify.
x=\frac{160+\sqrt{614}i}{17} x=\frac{-\sqrt{614}i+160}{17}
Add \frac{160}{17} to both sides of the equation.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}