Solve for x
x=\sqrt{3}-3\approx -1.267949192
x=-\sqrt{3}-3\approx -4.732050808
Graph
Share
Copied to clipboard
x^{2}+9x^{2}+36x+36=4x^{2}
Use binomial theorem \left(a+b\right)^{2}=a^{2}+2ab+b^{2} to expand \left(3x+6\right)^{2}.
10x^{2}+36x+36=4x^{2}
Combine x^{2} and 9x^{2} to get 10x^{2}.
10x^{2}+36x+36-4x^{2}=0
Subtract 4x^{2} from both sides.
6x^{2}+36x+36=0
Combine 10x^{2} and -4x^{2} to get 6x^{2}.
x=\frac{-36±\sqrt{36^{2}-4\times 6\times 36}}{2\times 6}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 6 for a, 36 for b, and 36 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-36±\sqrt{1296-4\times 6\times 36}}{2\times 6}
Square 36.
x=\frac{-36±\sqrt{1296-24\times 36}}{2\times 6}
Multiply -4 times 6.
x=\frac{-36±\sqrt{1296-864}}{2\times 6}
Multiply -24 times 36.
x=\frac{-36±\sqrt{432}}{2\times 6}
Add 1296 to -864.
x=\frac{-36±12\sqrt{3}}{2\times 6}
Take the square root of 432.
x=\frac{-36±12\sqrt{3}}{12}
Multiply 2 times 6.
x=\frac{12\sqrt{3}-36}{12}
Now solve the equation x=\frac{-36±12\sqrt{3}}{12} when ± is plus. Add -36 to 12\sqrt{3}.
x=\sqrt{3}-3
Divide -36+12\sqrt{3} by 12.
x=\frac{-12\sqrt{3}-36}{12}
Now solve the equation x=\frac{-36±12\sqrt{3}}{12} when ± is minus. Subtract 12\sqrt{3} from -36.
x=-\sqrt{3}-3
Divide -36-12\sqrt{3} by 12.
x=\sqrt{3}-3 x=-\sqrt{3}-3
The equation is now solved.
x^{2}+9x^{2}+36x+36=4x^{2}
Use binomial theorem \left(a+b\right)^{2}=a^{2}+2ab+b^{2} to expand \left(3x+6\right)^{2}.
10x^{2}+36x+36=4x^{2}
Combine x^{2} and 9x^{2} to get 10x^{2}.
10x^{2}+36x+36-4x^{2}=0
Subtract 4x^{2} from both sides.
6x^{2}+36x+36=0
Combine 10x^{2} and -4x^{2} to get 6x^{2}.
6x^{2}+36x=-36
Subtract 36 from both sides. Anything subtracted from zero gives its negation.
\frac{6x^{2}+36x}{6}=-\frac{36}{6}
Divide both sides by 6.
x^{2}+\frac{36}{6}x=-\frac{36}{6}
Dividing by 6 undoes the multiplication by 6.
x^{2}+6x=-\frac{36}{6}
Divide 36 by 6.
x^{2}+6x=-6
Divide -36 by 6.
x^{2}+6x+3^{2}=-6+3^{2}
Divide 6, the coefficient of the x term, by 2 to get 3. Then add the square of 3 to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}+6x+9=-6+9
Square 3.
x^{2}+6x+9=3
Add -6 to 9.
\left(x+3\right)^{2}=3
Factor x^{2}+6x+9. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x+3\right)^{2}}=\sqrt{3}
Take the square root of both sides of the equation.
x+3=\sqrt{3} x+3=-\sqrt{3}
Simplify.
x=\sqrt{3}-3 x=-\sqrt{3}-3
Subtract 3 from both sides of the equation.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}