Skip to main content
Solve for x (complex solution)
Tick mark Image
Graph

Similar Problems from Web Search

Share

x^{2}+9-6x+x^{2}=\sqrt{5}
Use binomial theorem \left(a-b\right)^{2}=a^{2}-2ab+b^{2} to expand \left(3-x\right)^{2}.
2x^{2}+9-6x=\sqrt{5}
Combine x^{2} and x^{2} to get 2x^{2}.
2x^{2}+9-6x-\sqrt{5}=0
Subtract \sqrt{5} from both sides.
2x^{2}-6x+9-\sqrt{5}=0
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
x=\frac{-\left(-6\right)±\sqrt{\left(-6\right)^{2}-4\times 2\left(9-\sqrt{5}\right)}}{2\times 2}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 2 for a, -6 for b, and 9-\sqrt{5} for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-\left(-6\right)±\sqrt{36-4\times 2\left(9-\sqrt{5}\right)}}{2\times 2}
Square -6.
x=\frac{-\left(-6\right)±\sqrt{36-8\left(9-\sqrt{5}\right)}}{2\times 2}
Multiply -4 times 2.
x=\frac{-\left(-6\right)±\sqrt{36+8\sqrt{5}-72}}{2\times 2}
Multiply -8 times 9-\sqrt{5}.
x=\frac{-\left(-6\right)±\sqrt{8\sqrt{5}-36}}{2\times 2}
Add 36 to -72+8\sqrt{5}.
x=\frac{-\left(-6\right)±2i\sqrt{9-2\sqrt{5}}}{2\times 2}
Take the square root of -36+8\sqrt{5}.
x=\frac{6±2i\sqrt{9-2\sqrt{5}}}{2\times 2}
The opposite of -6 is 6.
x=\frac{6±2i\sqrt{9-2\sqrt{5}}}{4}
Multiply 2 times 2.
x=\frac{6+2i\sqrt{9-2\sqrt{5}}}{4}
Now solve the equation x=\frac{6±2i\sqrt{9-2\sqrt{5}}}{4} when ± is plus. Add 6 to 2i\sqrt{9-2\sqrt{5}}.
x=\frac{3+i\sqrt{9-2\sqrt{5}}}{2}
Divide 6+2i\sqrt{9-2\sqrt{5}} by 4.
x=\frac{-2i\sqrt{9-2\sqrt{5}}+6}{4}
Now solve the equation x=\frac{6±2i\sqrt{9-2\sqrt{5}}}{4} when ± is minus. Subtract 2i\sqrt{9-2\sqrt{5}} from 6.
x=\frac{-i\sqrt{9-2\sqrt{5}}+3}{2}
Divide 6-2i\sqrt{9-2\sqrt{5}} by 4.
x=\frac{3+i\sqrt{9-2\sqrt{5}}}{2} x=\frac{-i\sqrt{9-2\sqrt{5}}+3}{2}
The equation is now solved.
x^{2}+9-6x+x^{2}=\sqrt{5}
Use binomial theorem \left(a-b\right)^{2}=a^{2}-2ab+b^{2} to expand \left(3-x\right)^{2}.
2x^{2}+9-6x=\sqrt{5}
Combine x^{2} and x^{2} to get 2x^{2}.
2x^{2}-6x=\sqrt{5}-9
Subtract 9 from both sides.
\frac{2x^{2}-6x}{2}=\frac{\sqrt{5}-9}{2}
Divide both sides by 2.
x^{2}+\left(-\frac{6}{2}\right)x=\frac{\sqrt{5}-9}{2}
Dividing by 2 undoes the multiplication by 2.
x^{2}-3x=\frac{\sqrt{5}-9}{2}
Divide -6 by 2.
x^{2}-3x+\left(-\frac{3}{2}\right)^{2}=\frac{\sqrt{5}-9}{2}+\left(-\frac{3}{2}\right)^{2}
Divide -3, the coefficient of the x term, by 2 to get -\frac{3}{2}. Then add the square of -\frac{3}{2} to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}-3x+\frac{9}{4}=\frac{\sqrt{5}-9}{2}+\frac{9}{4}
Square -\frac{3}{2} by squaring both the numerator and the denominator of the fraction.
x^{2}-3x+\frac{9}{4}=\frac{\sqrt{5}}{2}-\frac{9}{4}
Add \frac{\sqrt{5}-9}{2} to \frac{9}{4}.
\left(x-\frac{3}{2}\right)^{2}=\frac{\sqrt{5}}{2}-\frac{9}{4}
Factor x^{2}-3x+\frac{9}{4}. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x-\frac{3}{2}\right)^{2}}=\sqrt{\frac{\sqrt{5}}{2}-\frac{9}{4}}
Take the square root of both sides of the equation.
x-\frac{3}{2}=\frac{i\sqrt{9-2\sqrt{5}}}{2} x-\frac{3}{2}=-\frac{i\sqrt{9-2\sqrt{5}}}{2}
Simplify.
x=\frac{3+i\sqrt{9-2\sqrt{5}}}{2} x=\frac{-i\sqrt{9-2\sqrt{5}}+3}{2}
Add \frac{3}{2} to both sides of the equation.