Solve for x
x = -\frac{9}{7} = -1\frac{2}{7} \approx -1.285714286
x=-4
Graph
Share
Copied to clipboard
x^{2}+\left(3+\frac{16}{7}\right)x+4+\frac{8}{7}=0
Multiply 2 and \frac{8}{7} to get \frac{16}{7}.
x^{2}+\frac{37}{7}x+4+\frac{8}{7}=0
Add 3 and \frac{16}{7} to get \frac{37}{7}.
x^{2}+\frac{37}{7}x+\frac{36}{7}=0
Add 4 and \frac{8}{7} to get \frac{36}{7}.
x=\frac{-\frac{37}{7}±\sqrt{\left(\frac{37}{7}\right)^{2}-4\times \frac{36}{7}}}{2}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 1 for a, \frac{37}{7} for b, and \frac{36}{7} for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-\frac{37}{7}±\sqrt{\frac{1369}{49}-4\times \frac{36}{7}}}{2}
Square \frac{37}{7} by squaring both the numerator and the denominator of the fraction.
x=\frac{-\frac{37}{7}±\sqrt{\frac{1369}{49}-\frac{144}{7}}}{2}
Multiply -4 times \frac{36}{7}.
x=\frac{-\frac{37}{7}±\sqrt{\frac{361}{49}}}{2}
Add \frac{1369}{49} to -\frac{144}{7} by finding a common denominator and adding the numerators. Then reduce the fraction to lowest terms if possible.
x=\frac{-\frac{37}{7}±\frac{19}{7}}{2}
Take the square root of \frac{361}{49}.
x=-\frac{\frac{18}{7}}{2}
Now solve the equation x=\frac{-\frac{37}{7}±\frac{19}{7}}{2} when ± is plus. Add -\frac{37}{7} to \frac{19}{7} by finding a common denominator and adding the numerators. Then reduce the fraction to lowest terms if possible.
x=-\frac{9}{7}
Divide -\frac{18}{7} by 2.
x=-\frac{8}{2}
Now solve the equation x=\frac{-\frac{37}{7}±\frac{19}{7}}{2} when ± is minus. Subtract \frac{19}{7} from -\frac{37}{7} by finding a common denominator and subtracting the numerators. Then reduce the fraction to lowest terms if possible.
x=-4
Divide -8 by 2.
x=-\frac{9}{7} x=-4
The equation is now solved.
x^{2}+\left(3+\frac{16}{7}\right)x+4+\frac{8}{7}=0
Multiply 2 and \frac{8}{7} to get \frac{16}{7}.
x^{2}+\frac{37}{7}x+4+\frac{8}{7}=0
Add 3 and \frac{16}{7} to get \frac{37}{7}.
x^{2}+\frac{37}{7}x+\frac{36}{7}=0
Add 4 and \frac{8}{7} to get \frac{36}{7}.
x^{2}+\frac{37}{7}x=-\frac{36}{7}
Subtract \frac{36}{7} from both sides. Anything subtracted from zero gives its negation.
x^{2}+\frac{37}{7}x+\left(\frac{37}{14}\right)^{2}=-\frac{36}{7}+\left(\frac{37}{14}\right)^{2}
Divide \frac{37}{7}, the coefficient of the x term, by 2 to get \frac{37}{14}. Then add the square of \frac{37}{14} to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}+\frac{37}{7}x+\frac{1369}{196}=-\frac{36}{7}+\frac{1369}{196}
Square \frac{37}{14} by squaring both the numerator and the denominator of the fraction.
x^{2}+\frac{37}{7}x+\frac{1369}{196}=\frac{361}{196}
Add -\frac{36}{7} to \frac{1369}{196} by finding a common denominator and adding the numerators. Then reduce the fraction to lowest terms if possible.
\left(x+\frac{37}{14}\right)^{2}=\frac{361}{196}
Factor x^{2}+\frac{37}{7}x+\frac{1369}{196}. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x+\frac{37}{14}\right)^{2}}=\sqrt{\frac{361}{196}}
Take the square root of both sides of the equation.
x+\frac{37}{14}=\frac{19}{14} x+\frac{37}{14}=-\frac{19}{14}
Simplify.
x=-\frac{9}{7} x=-4
Subtract \frac{37}{14} from both sides of the equation.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}