Solve for k (complex solution)
\left\{\begin{matrix}k=-\frac{2+4m-2mx-x^{2}}{x-1}\text{, }&x\neq 1\\k\in \mathrm{C}\text{, }&x=1\text{ and }m=-\frac{1}{2}\end{matrix}\right.
Solve for m (complex solution)
\left\{\begin{matrix}m=-\frac{x^{2}-kx+k-2}{2\left(x-2\right)}\text{, }&x\neq 2\\m\in \mathrm{C}\text{, }&x=2\text{ and }k=2\end{matrix}\right.
Solve for k
\left\{\begin{matrix}k=-\frac{2+4m-2mx-x^{2}}{x-1}\text{, }&x\neq 1\\k\in \mathrm{R}\text{, }&x=1\text{ and }m=-\frac{1}{2}\end{matrix}\right.
Solve for m
\left\{\begin{matrix}m=-\frac{x^{2}-kx+k-2}{2\left(x-2\right)}\text{, }&x\neq 2\\m\in \mathrm{R}\text{, }&x=2\text{ and }k=2\end{matrix}\right.
Graph
Quiz
Linear Equation
5 problems similar to:
x ^ { 2 } + ( 2 m - 1 ) x - 2 m = ( k - 1 ) x + 2 m - k + 2
Share
Copied to clipboard
x^{2}+2mx-x-2m=\left(k-1\right)x+2m-k+2
Use the distributive property to multiply 2m-1 by x.
x^{2}+2mx-x-2m=kx-x+2m-k+2
Use the distributive property to multiply k-1 by x.
kx-x+2m-k+2=x^{2}+2mx-x-2m
Swap sides so that all variable terms are on the left hand side.
kx+2m-k+2=x^{2}+2mx-x-2m+x
Add x to both sides.
kx+2m-k+2=x^{2}+2mx-2m
Combine -x and x to get 0.
kx-k+2=x^{2}+2mx-2m-2m
Subtract 2m from both sides.
kx-k+2=x^{2}+2mx-4m
Combine -2m and -2m to get -4m.
kx-k=x^{2}+2mx-4m-2
Subtract 2 from both sides.
\left(x-1\right)k=x^{2}+2mx-4m-2
Combine all terms containing k.
\frac{\left(x-1\right)k}{x-1}=\frac{x^{2}+2mx-4m-2}{x-1}
Divide both sides by -1+x.
k=\frac{x^{2}+2mx-4m-2}{x-1}
Dividing by -1+x undoes the multiplication by -1+x.
x^{2}+2mx-x-2m=\left(k-1\right)x+2m-k+2
Use the distributive property to multiply 2m-1 by x.
x^{2}+2mx-x-2m=kx-x+2m-k+2
Use the distributive property to multiply k-1 by x.
x^{2}+2mx-x-2m-2m=kx-x-k+2
Subtract 2m from both sides.
x^{2}+2mx-x-4m=kx-x-k+2
Combine -2m and -2m to get -4m.
2mx-x-4m=kx-x-k+2-x^{2}
Subtract x^{2} from both sides.
2mx-4m=kx-x-k+2-x^{2}+x
Add x to both sides.
2mx-4m=kx-k+2-x^{2}
Combine -x and x to get 0.
\left(2x-4\right)m=kx-k+2-x^{2}
Combine all terms containing m.
\left(2x-4\right)m=2-k+kx-x^{2}
The equation is in standard form.
\frac{\left(2x-4\right)m}{2x-4}=\frac{2-k+kx-x^{2}}{2x-4}
Divide both sides by -4+2x.
m=\frac{2-k+kx-x^{2}}{2x-4}
Dividing by -4+2x undoes the multiplication by -4+2x.
m=\frac{2-k+kx-x^{2}}{2\left(x-2\right)}
Divide kx-k+2-x^{2} by -4+2x.
x^{2}+2mx-x-2m=\left(k-1\right)x+2m-k+2
Use the distributive property to multiply 2m-1 by x.
x^{2}+2mx-x-2m=kx-x+2m-k+2
Use the distributive property to multiply k-1 by x.
kx-x+2m-k+2=x^{2}+2mx-x-2m
Swap sides so that all variable terms are on the left hand side.
kx+2m-k+2=x^{2}+2mx-x-2m+x
Add x to both sides.
kx+2m-k+2=x^{2}+2mx-2m
Combine -x and x to get 0.
kx-k+2=x^{2}+2mx-2m-2m
Subtract 2m from both sides.
kx-k+2=x^{2}+2mx-4m
Combine -2m and -2m to get -4m.
kx-k=x^{2}+2mx-4m-2
Subtract 2 from both sides.
\left(x-1\right)k=x^{2}+2mx-4m-2
Combine all terms containing k.
\frac{\left(x-1\right)k}{x-1}=\frac{x^{2}+2mx-4m-2}{x-1}
Divide both sides by x-1.
k=\frac{x^{2}+2mx-4m-2}{x-1}
Dividing by x-1 undoes the multiplication by x-1.
x^{2}+2mx-x-2m=\left(k-1\right)x+2m-k+2
Use the distributive property to multiply 2m-1 by x.
x^{2}+2mx-x-2m=kx-x+2m-k+2
Use the distributive property to multiply k-1 by x.
x^{2}+2mx-x-2m-2m=kx-x-k+2
Subtract 2m from both sides.
x^{2}+2mx-x-4m=kx-x-k+2
Combine -2m and -2m to get -4m.
2mx-x-4m=kx-x-k+2-x^{2}
Subtract x^{2} from both sides.
2mx-4m=kx-x-k+2-x^{2}+x
Add x to both sides.
2mx-4m=kx-k+2-x^{2}
Combine -x and x to get 0.
\left(2x-4\right)m=kx-k+2-x^{2}
Combine all terms containing m.
\left(2x-4\right)m=2-k+kx-x^{2}
The equation is in standard form.
\frac{\left(2x-4\right)m}{2x-4}=\frac{2-k+kx-x^{2}}{2x-4}
Divide both sides by -4+2x.
m=\frac{2-k+kx-x^{2}}{2x-4}
Dividing by -4+2x undoes the multiplication by -4+2x.
m=\frac{2-k+kx-x^{2}}{2\left(x-2\right)}
Divide kx-k+2-x^{2} by -4+2x.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}