Skip to main content
Solve for x (complex solution)
Tick mark Image
Graph

Similar Problems from Web Search

Share

x^{2}+196-28x+x^{2}=8^{2}
Use binomial theorem \left(a-b\right)^{2}=a^{2}-2ab+b^{2} to expand \left(14-x\right)^{2}.
2x^{2}+196-28x=8^{2}
Combine x^{2} and x^{2} to get 2x^{2}.
2x^{2}+196-28x=64
Calculate 8 to the power of 2 and get 64.
2x^{2}+196-28x-64=0
Subtract 64 from both sides.
2x^{2}+132-28x=0
Subtract 64 from 196 to get 132.
2x^{2}-28x+132=0
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
x=\frac{-\left(-28\right)±\sqrt{\left(-28\right)^{2}-4\times 2\times 132}}{2\times 2}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 2 for a, -28 for b, and 132 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-\left(-28\right)±\sqrt{784-4\times 2\times 132}}{2\times 2}
Square -28.
x=\frac{-\left(-28\right)±\sqrt{784-8\times 132}}{2\times 2}
Multiply -4 times 2.
x=\frac{-\left(-28\right)±\sqrt{784-1056}}{2\times 2}
Multiply -8 times 132.
x=\frac{-\left(-28\right)±\sqrt{-272}}{2\times 2}
Add 784 to -1056.
x=\frac{-\left(-28\right)±4\sqrt{17}i}{2\times 2}
Take the square root of -272.
x=\frac{28±4\sqrt{17}i}{2\times 2}
The opposite of -28 is 28.
x=\frac{28±4\sqrt{17}i}{4}
Multiply 2 times 2.
x=\frac{28+4\sqrt{17}i}{4}
Now solve the equation x=\frac{28±4\sqrt{17}i}{4} when ± is plus. Add 28 to 4i\sqrt{17}.
x=7+\sqrt{17}i
Divide 28+4i\sqrt{17} by 4.
x=\frac{-4\sqrt{17}i+28}{4}
Now solve the equation x=\frac{28±4\sqrt{17}i}{4} when ± is minus. Subtract 4i\sqrt{17} from 28.
x=-\sqrt{17}i+7
Divide 28-4i\sqrt{17} by 4.
x=7+\sqrt{17}i x=-\sqrt{17}i+7
The equation is now solved.
x^{2}+196-28x+x^{2}=8^{2}
Use binomial theorem \left(a-b\right)^{2}=a^{2}-2ab+b^{2} to expand \left(14-x\right)^{2}.
2x^{2}+196-28x=8^{2}
Combine x^{2} and x^{2} to get 2x^{2}.
2x^{2}+196-28x=64
Calculate 8 to the power of 2 and get 64.
2x^{2}-28x=64-196
Subtract 196 from both sides.
2x^{2}-28x=-132
Subtract 196 from 64 to get -132.
\frac{2x^{2}-28x}{2}=-\frac{132}{2}
Divide both sides by 2.
x^{2}+\left(-\frac{28}{2}\right)x=-\frac{132}{2}
Dividing by 2 undoes the multiplication by 2.
x^{2}-14x=-\frac{132}{2}
Divide -28 by 2.
x^{2}-14x=-66
Divide -132 by 2.
x^{2}-14x+\left(-7\right)^{2}=-66+\left(-7\right)^{2}
Divide -14, the coefficient of the x term, by 2 to get -7. Then add the square of -7 to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}-14x+49=-66+49
Square -7.
x^{2}-14x+49=-17
Add -66 to 49.
\left(x-7\right)^{2}=-17
Factor x^{2}-14x+49. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x-7\right)^{2}}=\sqrt{-17}
Take the square root of both sides of the equation.
x-7=\sqrt{17}i x-7=-\sqrt{17}i
Simplify.
x=7+\sqrt{17}i x=-\sqrt{17}i+7
Add 7 to both sides of the equation.