Skip to main content
Solve for x
Tick mark Image
Graph

Similar Problems from Web Search

Share

x^{2}+\frac{1}{4}x^{2}-2,5x+6,25=5
Use binomial theorem \left(a+b\right)^{2}=a^{2}+2ab+b^{2} to expand \left(-\frac{1}{2}x+2,5\right)^{2}.
\frac{5}{4}x^{2}-2,5x+6,25=5
Combine x^{2} and \frac{1}{4}x^{2} to get \frac{5}{4}x^{2}.
\frac{5}{4}x^{2}-2,5x+6,25-5=0
Subtract 5 from both sides.
\frac{5}{4}x^{2}-2,5x+1,25=0
Subtract 5 from 6,25 to get 1,25.
\frac{5}{4}x^{2}-2,5x+\frac{5}{4}=0
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
x=\frac{-\left(-2,5\right)±\sqrt{\left(-2,5\right)^{2}-4\times \frac{5}{4}\times \frac{5}{4}}}{2\times \frac{5}{4}}
This equation is in standard form: ax^{2}+bx+c=0. Substitute \frac{5}{4} for a, -2,5 for b, and \frac{5}{4} for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-\left(-2,5\right)±\sqrt{6,25-4\times \frac{5}{4}\times \frac{5}{4}}}{2\times \frac{5}{4}}
Square -2,5 by squaring both the numerator and the denominator of the fraction.
x=\frac{-\left(-2,5\right)±\sqrt{6,25-5\times \frac{5}{4}}}{2\times \frac{5}{4}}
Multiply -4 times \frac{5}{4}.
x=\frac{-\left(-2,5\right)±\sqrt{\frac{25-25}{4}}}{2\times \frac{5}{4}}
Multiply -5 times \frac{5}{4}.
x=\frac{-\left(-2,5\right)±\sqrt{0}}{2\times \frac{5}{4}}
Add 6,25 to -\frac{25}{4} by finding a common denominator and adding the numerators. Then reduce the fraction to lowest terms if possible.
x=-\frac{-2,5}{2\times \frac{5}{4}}
Take the square root of 0.
x=\frac{2,5}{2\times \frac{5}{4}}
The opposite of -2,5 is 2,5.
x=\frac{2,5}{\frac{5}{2}}
Multiply 2 times \frac{5}{4}.
x=1
Divide 2,5 by \frac{5}{2} by multiplying 2,5 by the reciprocal of \frac{5}{2}.
x^{2}+\frac{1}{4}x^{2}-2,5x+6,25=5
Use binomial theorem \left(a+b\right)^{2}=a^{2}+2ab+b^{2} to expand \left(-\frac{1}{2}x+2,5\right)^{2}.
\frac{5}{4}x^{2}-2,5x+6,25=5
Combine x^{2} and \frac{1}{4}x^{2} to get \frac{5}{4}x^{2}.
\frac{5}{4}x^{2}-2,5x=5-6,25
Subtract 6,25 from both sides.
\frac{5}{4}x^{2}-2,5x=-1,25
Subtract 6,25 from 5 to get -1,25.
\frac{\frac{5}{4}x^{2}-2,5x}{\frac{5}{4}}=-\frac{1,25}{\frac{5}{4}}
Divide both sides of the equation by \frac{5}{4}, which is the same as multiplying both sides by the reciprocal of the fraction.
x^{2}+\left(-\frac{2,5}{\frac{5}{4}}\right)x=-\frac{1,25}{\frac{5}{4}}
Dividing by \frac{5}{4} undoes the multiplication by \frac{5}{4}.
x^{2}-2x=-\frac{1,25}{\frac{5}{4}}
Divide -2,5 by \frac{5}{4} by multiplying -2,5 by the reciprocal of \frac{5}{4}.
x^{2}-2x=-1
Divide -1,25 by \frac{5}{4} by multiplying -1,25 by the reciprocal of \frac{5}{4}.
x^{2}-2x+1=-1+1
Divide -2, the coefficient of the x term, by 2 to get -1. Then add the square of -1 to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}-2x+1=0
Add -1 to 1.
\left(x-1\right)^{2}=0
Factor x^{2}-2x+1. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x-1\right)^{2}}=\sqrt{0}
Take the square root of both sides of the equation.
x-1=0 x-1=0
Simplify.
x=1 x=1
Add 1 to both sides of the equation.
x=1
The equation is now solved. Solutions are the same.