x ^ { 2 } + ( - \frac { 1 } { 2 } x + 2,5 ) ^ { 2 } = 5
Solve for x
x=1
Graph
Quiz
Quadratic Equation
5 problems similar to:
x ^ { 2 } + ( - \frac { 1 } { 2 } x + 2,5 ) ^ { 2 } = 5
Share
Copied to clipboard
x^{2}+\frac{1}{4}x^{2}-2,5x+6,25=5
Use binomial theorem \left(a+b\right)^{2}=a^{2}+2ab+b^{2} to expand \left(-\frac{1}{2}x+2,5\right)^{2}.
\frac{5}{4}x^{2}-2,5x+6,25=5
Combine x^{2} and \frac{1}{4}x^{2} to get \frac{5}{4}x^{2}.
\frac{5}{4}x^{2}-2,5x+6,25-5=0
Subtract 5 from both sides.
\frac{5}{4}x^{2}-2,5x+1,25=0
Subtract 5 from 6,25 to get 1,25.
\frac{5}{4}x^{2}-2,5x+\frac{5}{4}=0
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
x=\frac{-\left(-2,5\right)±\sqrt{\left(-2,5\right)^{2}-4\times \frac{5}{4}\times \frac{5}{4}}}{2\times \frac{5}{4}}
This equation is in standard form: ax^{2}+bx+c=0. Substitute \frac{5}{4} for a, -2,5 for b, and \frac{5}{4} for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-\left(-2,5\right)±\sqrt{6,25-4\times \frac{5}{4}\times \frac{5}{4}}}{2\times \frac{5}{4}}
Square -2,5 by squaring both the numerator and the denominator of the fraction.
x=\frac{-\left(-2,5\right)±\sqrt{6,25-5\times \frac{5}{4}}}{2\times \frac{5}{4}}
Multiply -4 times \frac{5}{4}.
x=\frac{-\left(-2,5\right)±\sqrt{\frac{25-25}{4}}}{2\times \frac{5}{4}}
Multiply -5 times \frac{5}{4}.
x=\frac{-\left(-2,5\right)±\sqrt{0}}{2\times \frac{5}{4}}
Add 6,25 to -\frac{25}{4} by finding a common denominator and adding the numerators. Then reduce the fraction to lowest terms if possible.
x=-\frac{-2,5}{2\times \frac{5}{4}}
Take the square root of 0.
x=\frac{2,5}{2\times \frac{5}{4}}
The opposite of -2,5 is 2,5.
x=\frac{2,5}{\frac{5}{2}}
Multiply 2 times \frac{5}{4}.
x=1
Divide 2,5 by \frac{5}{2} by multiplying 2,5 by the reciprocal of \frac{5}{2}.
x^{2}+\frac{1}{4}x^{2}-2,5x+6,25=5
Use binomial theorem \left(a+b\right)^{2}=a^{2}+2ab+b^{2} to expand \left(-\frac{1}{2}x+2,5\right)^{2}.
\frac{5}{4}x^{2}-2,5x+6,25=5
Combine x^{2} and \frac{1}{4}x^{2} to get \frac{5}{4}x^{2}.
\frac{5}{4}x^{2}-2,5x=5-6,25
Subtract 6,25 from both sides.
\frac{5}{4}x^{2}-2,5x=-1,25
Subtract 6,25 from 5 to get -1,25.
\frac{\frac{5}{4}x^{2}-2,5x}{\frac{5}{4}}=-\frac{1,25}{\frac{5}{4}}
Divide both sides of the equation by \frac{5}{4}, which is the same as multiplying both sides by the reciprocal of the fraction.
x^{2}+\left(-\frac{2,5}{\frac{5}{4}}\right)x=-\frac{1,25}{\frac{5}{4}}
Dividing by \frac{5}{4} undoes the multiplication by \frac{5}{4}.
x^{2}-2x=-\frac{1,25}{\frac{5}{4}}
Divide -2,5 by \frac{5}{4} by multiplying -2,5 by the reciprocal of \frac{5}{4}.
x^{2}-2x=-1
Divide -1,25 by \frac{5}{4} by multiplying -1,25 by the reciprocal of \frac{5}{4}.
x^{2}-2x+1=-1+1
Divide -2, the coefficient of the x term, by 2 to get -1. Then add the square of -1 to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}-2x+1=0
Add -1 to 1.
\left(x-1\right)^{2}=0
Factor x^{2}-2x+1. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x-1\right)^{2}}=\sqrt{0}
Take the square root of both sides of the equation.
x-1=0 x-1=0
Simplify.
x=1 x=1
Add 1 to both sides of the equation.
x=1
The equation is now solved. Solutions are the same.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}