Solve for x
x=1
x=5
Graph
Share
Copied to clipboard
2\left(x^{2}+\left(\frac{x+3}{2}\right)^{2}-8x-2\times \frac{x+3}{2}\right)+14=0
Multiply both sides of the equation by 2.
2\left(x^{2}+\frac{\left(x+3\right)^{2}}{2^{2}}-8x-2\times \frac{x+3}{2}\right)+14=0
To raise \frac{x+3}{2} to a power, raise both numerator and denominator to the power and then divide.
2\left(\frac{\left(x^{2}-8x\right)\times 2^{2}}{2^{2}}+\frac{\left(x+3\right)^{2}}{2^{2}}-2\times \frac{x+3}{2}\right)+14=0
To add or subtract expressions, expand them to make their denominators the same. Multiply x^{2}-8x times \frac{2^{2}}{2^{2}}.
2\left(\frac{\left(x^{2}-8x\right)\times 2^{2}+\left(x+3\right)^{2}}{2^{2}}-2\times \frac{x+3}{2}\right)+14=0
Since \frac{\left(x^{2}-8x\right)\times 2^{2}}{2^{2}} and \frac{\left(x+3\right)^{2}}{2^{2}} have the same denominator, add them by adding their numerators.
2\left(\frac{4x^{2}-32x+x^{2}+6x+9}{2^{2}}-2\times \frac{x+3}{2}\right)+14=0
Do the multiplications in \left(x^{2}-8x\right)\times 2^{2}+\left(x+3\right)^{2}.
2\left(\frac{5x^{2}-26x+9}{2^{2}}-2\times \frac{x+3}{2}\right)+14=0
Combine like terms in 4x^{2}-32x+x^{2}+6x+9.
2\left(\frac{5x^{2}-26x+9}{2^{2}}-\frac{2\left(x+3\right)}{2}\right)+14=0
Express 2\times \frac{x+3}{2} as a single fraction.
2\left(\frac{5x^{2}-26x+9}{2^{2}}-\left(x+3\right)\right)+14=0
Cancel out 2 and 2.
2\left(\frac{5x^{2}-26x+9}{2^{2}}-x-3\right)+14=0
To find the opposite of x+3, find the opposite of each term.
2\left(\frac{5x^{2}-26x+9}{2^{2}}+\frac{\left(-x-3\right)\times 2^{2}}{2^{2}}\right)+14=0
To add or subtract expressions, expand them to make their denominators the same. Multiply -x-3 times \frac{2^{2}}{2^{2}}.
2\times \frac{5x^{2}-26x+9+\left(-x-3\right)\times 2^{2}}{2^{2}}+14=0
Since \frac{5x^{2}-26x+9}{2^{2}} and \frac{\left(-x-3\right)\times 2^{2}}{2^{2}} have the same denominator, add them by adding their numerators.
2\times \frac{5x^{2}-26x+9-4x-12}{2^{2}}+14=0
Do the multiplications in 5x^{2}-26x+9+\left(-x-3\right)\times 2^{2}.
2\times \frac{5x^{2}-30x-3}{2^{2}}+14=0
Combine like terms in 5x^{2}-26x+9-4x-12.
\frac{2\left(5x^{2}-30x-3\right)}{2^{2}}+14=0
Express 2\times \frac{5x^{2}-30x-3}{2^{2}} as a single fraction.
\frac{5x^{2}-30x-3}{2}+14=0
Cancel out 2 in both numerator and denominator.
\frac{5}{2}x^{2}-15x-\frac{3}{2}+14=0
Divide each term of 5x^{2}-30x-3 by 2 to get \frac{5}{2}x^{2}-15x-\frac{3}{2}.
\frac{5}{2}x^{2}-15x+\frac{25}{2}=0
Add -\frac{3}{2} and 14 to get \frac{25}{2}.
x=\frac{-\left(-15\right)±\sqrt{\left(-15\right)^{2}-4\times \frac{5}{2}\times \frac{25}{2}}}{2\times \frac{5}{2}}
This equation is in standard form: ax^{2}+bx+c=0. Substitute \frac{5}{2} for a, -15 for b, and \frac{25}{2} for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-\left(-15\right)±\sqrt{225-4\times \frac{5}{2}\times \frac{25}{2}}}{2\times \frac{5}{2}}
Square -15.
x=\frac{-\left(-15\right)±\sqrt{225-10\times \frac{25}{2}}}{2\times \frac{5}{2}}
Multiply -4 times \frac{5}{2}.
x=\frac{-\left(-15\right)±\sqrt{225-125}}{2\times \frac{5}{2}}
Multiply -10 times \frac{25}{2}.
x=\frac{-\left(-15\right)±\sqrt{100}}{2\times \frac{5}{2}}
Add 225 to -125.
x=\frac{-\left(-15\right)±10}{2\times \frac{5}{2}}
Take the square root of 100.
x=\frac{15±10}{2\times \frac{5}{2}}
The opposite of -15 is 15.
x=\frac{15±10}{5}
Multiply 2 times \frac{5}{2}.
x=\frac{25}{5}
Now solve the equation x=\frac{15±10}{5} when ± is plus. Add 15 to 10.
x=5
Divide 25 by 5.
x=\frac{5}{5}
Now solve the equation x=\frac{15±10}{5} when ± is minus. Subtract 10 from 15.
x=1
Divide 5 by 5.
x=5 x=1
The equation is now solved.
2\left(x^{2}+\left(\frac{x+3}{2}\right)^{2}-8x-2\times \frac{x+3}{2}\right)+14=0
Multiply both sides of the equation by 2.
2\left(x^{2}+\frac{\left(x+3\right)^{2}}{2^{2}}-8x-2\times \frac{x+3}{2}\right)+14=0
To raise \frac{x+3}{2} to a power, raise both numerator and denominator to the power and then divide.
2\left(\frac{\left(x^{2}-8x\right)\times 2^{2}}{2^{2}}+\frac{\left(x+3\right)^{2}}{2^{2}}-2\times \frac{x+3}{2}\right)+14=0
To add or subtract expressions, expand them to make their denominators the same. Multiply x^{2}-8x times \frac{2^{2}}{2^{2}}.
2\left(\frac{\left(x^{2}-8x\right)\times 2^{2}+\left(x+3\right)^{2}}{2^{2}}-2\times \frac{x+3}{2}\right)+14=0
Since \frac{\left(x^{2}-8x\right)\times 2^{2}}{2^{2}} and \frac{\left(x+3\right)^{2}}{2^{2}} have the same denominator, add them by adding their numerators.
2\left(\frac{4x^{2}-32x+x^{2}+6x+9}{2^{2}}-2\times \frac{x+3}{2}\right)+14=0
Do the multiplications in \left(x^{2}-8x\right)\times 2^{2}+\left(x+3\right)^{2}.
2\left(\frac{5x^{2}-26x+9}{2^{2}}-2\times \frac{x+3}{2}\right)+14=0
Combine like terms in 4x^{2}-32x+x^{2}+6x+9.
2\left(\frac{5x^{2}-26x+9}{2^{2}}-\frac{2\left(x+3\right)}{2}\right)+14=0
Express 2\times \frac{x+3}{2} as a single fraction.
2\left(\frac{5x^{2}-26x+9}{2^{2}}-\left(x+3\right)\right)+14=0
Cancel out 2 and 2.
2\left(\frac{5x^{2}-26x+9}{2^{2}}-x-3\right)+14=0
To find the opposite of x+3, find the opposite of each term.
2\left(\frac{5x^{2}-26x+9}{2^{2}}+\frac{\left(-x-3\right)\times 2^{2}}{2^{2}}\right)+14=0
To add or subtract expressions, expand them to make their denominators the same. Multiply -x-3 times \frac{2^{2}}{2^{2}}.
2\times \frac{5x^{2}-26x+9+\left(-x-3\right)\times 2^{2}}{2^{2}}+14=0
Since \frac{5x^{2}-26x+9}{2^{2}} and \frac{\left(-x-3\right)\times 2^{2}}{2^{2}} have the same denominator, add them by adding their numerators.
2\times \frac{5x^{2}-26x+9-4x-12}{2^{2}}+14=0
Do the multiplications in 5x^{2}-26x+9+\left(-x-3\right)\times 2^{2}.
2\times \frac{5x^{2}-30x-3}{2^{2}}+14=0
Combine like terms in 5x^{2}-26x+9-4x-12.
\frac{2\left(5x^{2}-30x-3\right)}{2^{2}}+14=0
Express 2\times \frac{5x^{2}-30x-3}{2^{2}} as a single fraction.
\frac{5x^{2}-30x-3}{2}+14=0
Cancel out 2 in both numerator and denominator.
\frac{5}{2}x^{2}-15x-\frac{3}{2}+14=0
Divide each term of 5x^{2}-30x-3 by 2 to get \frac{5}{2}x^{2}-15x-\frac{3}{2}.
\frac{5}{2}x^{2}-15x+\frac{25}{2}=0
Add -\frac{3}{2} and 14 to get \frac{25}{2}.
\frac{5}{2}x^{2}-15x=-\frac{25}{2}
Subtract \frac{25}{2} from both sides. Anything subtracted from zero gives its negation.
\frac{\frac{5}{2}x^{2}-15x}{\frac{5}{2}}=-\frac{\frac{25}{2}}{\frac{5}{2}}
Divide both sides of the equation by \frac{5}{2}, which is the same as multiplying both sides by the reciprocal of the fraction.
x^{2}+\left(-\frac{15}{\frac{5}{2}}\right)x=-\frac{\frac{25}{2}}{\frac{5}{2}}
Dividing by \frac{5}{2} undoes the multiplication by \frac{5}{2}.
x^{2}-6x=-\frac{\frac{25}{2}}{\frac{5}{2}}
Divide -15 by \frac{5}{2} by multiplying -15 by the reciprocal of \frac{5}{2}.
x^{2}-6x=-5
Divide -\frac{25}{2} by \frac{5}{2} by multiplying -\frac{25}{2} by the reciprocal of \frac{5}{2}.
x^{2}-6x+\left(-3\right)^{2}=-5+\left(-3\right)^{2}
Divide -6, the coefficient of the x term, by 2 to get -3. Then add the square of -3 to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}-6x+9=-5+9
Square -3.
x^{2}-6x+9=4
Add -5 to 9.
\left(x-3\right)^{2}=4
Factor x^{2}-6x+9. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x-3\right)^{2}}=\sqrt{4}
Take the square root of both sides of the equation.
x-3=2 x-3=-2
Simplify.
x=5 x=1
Add 3 to both sides of the equation.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}