Solve for x
x=-4
x=4
Graph
Share
Copied to clipboard
4\left(x^{2}+\left(\frac{3x}{4}+1\right)^{2}\right)-8\left(\frac{3x}{4}+1\right)=96
Multiply both sides of the equation by 4.
4\left(x^{2}+\left(\frac{3x}{4}\right)^{2}+2\times \frac{3x}{4}+1\right)-8\left(\frac{3x}{4}+1\right)=96
Use binomial theorem \left(a+b\right)^{2}=a^{2}+2ab+b^{2} to expand \left(\frac{3x}{4}+1\right)^{2}.
4\left(x^{2}+\frac{\left(3x\right)^{2}}{4^{2}}+2\times \frac{3x}{4}+1\right)-8\left(\frac{3x}{4}+1\right)=96
To raise \frac{3x}{4} to a power, raise both numerator and denominator to the power and then divide.
4\left(x^{2}+\frac{\left(3x\right)^{2}}{4^{2}}+\frac{3x}{2}+1\right)-8\left(\frac{3x}{4}+1\right)=96
Cancel out 4, the greatest common factor in 2 and 4.
4\left(x^{2}+\frac{\left(3x\right)^{2}}{16}+\frac{8\times 3x}{16}+1\right)-8\left(\frac{3x}{4}+1\right)=96
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of 4^{2} and 2 is 16. Multiply \frac{3x}{2} times \frac{8}{8}.
4\left(x^{2}+\frac{\left(3x\right)^{2}+8\times 3x}{16}+1\right)-8\left(\frac{3x}{4}+1\right)=96
Since \frac{\left(3x\right)^{2}}{16} and \frac{8\times 3x}{16} have the same denominator, add them by adding their numerators.
4\left(x^{2}+\frac{\left(3x\right)^{2}+24x}{16}+1\right)-8\left(\frac{3x}{4}+1\right)=96
Do the multiplications in \left(3x\right)^{2}+8\times 3x.
4\left(x^{2}+\frac{9x^{2}+24x}{16}+1\right)-8\left(\frac{3x}{4}+1\right)=96
Combine like terms in \left(3x\right)^{2}+24x.
4x^{2}+4\times \frac{9x^{2}+24x}{16}+4-8\left(\frac{3x}{4}+1\right)=96
Use the distributive property to multiply 4 by x^{2}+\frac{9x^{2}+24x}{16}+1.
4x^{2}+\frac{9x^{2}+24x}{4}+4-8\left(\frac{3x}{4}+1\right)=96
Cancel out 16, the greatest common factor in 4 and 16.
4x^{2}+\frac{9}{4}x^{2}+6x+4-8\left(\frac{3x}{4}+1\right)=96
Divide each term of 9x^{2}+24x by 4 to get \frac{9}{4}x^{2}+6x.
\frac{25}{4}x^{2}+6x+4-8\left(\frac{3x}{4}+1\right)=96
Combine 4x^{2} and \frac{9}{4}x^{2} to get \frac{25}{4}x^{2}.
\frac{25}{4}x^{2}+6x+4-8\left(\frac{3x}{4}+1\right)-96=0
Subtract 96 from both sides.
4\left(\frac{25}{4}x^{2}+6x+4-8\left(\frac{3x}{4}+1\right)\right)-384=0
Multiply both sides of the equation by 4.
16\left(\frac{25}{4}x^{2}+6x+4-8\left(\frac{3x}{4}+1\right)\right)-1536=0
Multiply both sides of the equation by 4.
16\left(\frac{25}{4}x^{2}+6x+4-8\times \frac{3x}{4}-8\right)-1536=0
Use the distributive property to multiply -8 by \frac{3x}{4}+1.
16\left(\frac{25}{4}x^{2}+6x+4-2\times 3x-8\right)-1536=0
Cancel out 4, the greatest common factor in 8 and 4.
16\left(\frac{25}{4}x^{2}+6x+4-6x-8\right)-1536=0
Multiply -2 and 3 to get -6.
16\left(\frac{25}{4}x^{2}+4-8\right)-1536=0
Combine 6x and -6x to get 0.
16\left(\frac{25}{4}x^{2}-4\right)-1536=0
Subtract 8 from 4 to get -4.
100x^{2}-64-1536=0
Use the distributive property to multiply 16 by \frac{25}{4}x^{2}-4.
100x^{2}-1600=0
Subtract 1536 from -64 to get -1600.
x^{2}-16=0
Divide both sides by 100.
\left(x-4\right)\left(x+4\right)=0
Consider x^{2}-16. Rewrite x^{2}-16 as x^{2}-4^{2}. The difference of squares can be factored using the rule: a^{2}-b^{2}=\left(a-b\right)\left(a+b\right).
x=4 x=-4
To find equation solutions, solve x-4=0 and x+4=0.
4\left(x^{2}+\left(\frac{3x}{4}+1\right)^{2}\right)-8\left(\frac{3x}{4}+1\right)=96
Multiply both sides of the equation by 4.
4\left(x^{2}+\left(\frac{3x}{4}\right)^{2}+2\times \frac{3x}{4}+1\right)-8\left(\frac{3x}{4}+1\right)=96
Use binomial theorem \left(a+b\right)^{2}=a^{2}+2ab+b^{2} to expand \left(\frac{3x}{4}+1\right)^{2}.
4\left(x^{2}+\frac{\left(3x\right)^{2}}{4^{2}}+2\times \frac{3x}{4}+1\right)-8\left(\frac{3x}{4}+1\right)=96
To raise \frac{3x}{4} to a power, raise both numerator and denominator to the power and then divide.
4\left(x^{2}+\frac{\left(3x\right)^{2}}{4^{2}}+\frac{3x}{2}+1\right)-8\left(\frac{3x}{4}+1\right)=96
Cancel out 4, the greatest common factor in 2 and 4.
4\left(x^{2}+\frac{\left(3x\right)^{2}}{16}+\frac{8\times 3x}{16}+1\right)-8\left(\frac{3x}{4}+1\right)=96
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of 4^{2} and 2 is 16. Multiply \frac{3x}{2} times \frac{8}{8}.
4\left(x^{2}+\frac{\left(3x\right)^{2}+8\times 3x}{16}+1\right)-8\left(\frac{3x}{4}+1\right)=96
Since \frac{\left(3x\right)^{2}}{16} and \frac{8\times 3x}{16} have the same denominator, add them by adding their numerators.
4\left(x^{2}+\frac{\left(3x\right)^{2}+24x}{16}+1\right)-8\left(\frac{3x}{4}+1\right)=96
Do the multiplications in \left(3x\right)^{2}+8\times 3x.
4\left(x^{2}+\frac{9x^{2}+24x}{16}+1\right)-8\left(\frac{3x}{4}+1\right)=96
Combine like terms in \left(3x\right)^{2}+24x.
4x^{2}+4\times \frac{9x^{2}+24x}{16}+4-8\left(\frac{3x}{4}+1\right)=96
Use the distributive property to multiply 4 by x^{2}+\frac{9x^{2}+24x}{16}+1.
4x^{2}+\frac{9x^{2}+24x}{4}+4-8\left(\frac{3x}{4}+1\right)=96
Cancel out 16, the greatest common factor in 4 and 16.
4x^{2}+\frac{9}{4}x^{2}+6x+4-8\left(\frac{3x}{4}+1\right)=96
Divide each term of 9x^{2}+24x by 4 to get \frac{9}{4}x^{2}+6x.
\frac{25}{4}x^{2}+6x+4-8\left(\frac{3x}{4}+1\right)=96
Combine 4x^{2} and \frac{9}{4}x^{2} to get \frac{25}{4}x^{2}.
4\left(\frac{25}{4}x^{2}+6x+4\right)-32\left(\frac{3x}{4}+1\right)=384
Multiply both sides of the equation by 4.
16\left(\frac{25}{4}x^{2}+6x+4\right)-4\times 32\left(\frac{3x}{4}+1\right)=1536
Multiply both sides of the equation by 4.
100x^{2}+96x+64-4\times 32\left(\frac{3x}{4}+1\right)=1536
Use the distributive property to multiply 16 by \frac{25}{4}x^{2}+6x+4.
100x^{2}+96x+64-128\left(\frac{3x}{4}+1\right)=1536
Multiply -4 and 32 to get -128.
100x^{2}+96x+64-128\times \frac{3x}{4}-128=1536
Use the distributive property to multiply -128 by \frac{3x}{4}+1.
100x^{2}+96x+64-32\times 3x-128=1536
Cancel out 4, the greatest common factor in 128 and 4.
100x^{2}+96x+64-96x-128=1536
Multiply -32 and 3 to get -96.
100x^{2}+64-128=1536
Combine 96x and -96x to get 0.
100x^{2}-64=1536
Subtract 128 from 64 to get -64.
100x^{2}=1536+64
Add 64 to both sides.
100x^{2}=1600
Add 1536 and 64 to get 1600.
x^{2}=\frac{1600}{100}
Divide both sides by 100.
x^{2}=16
Divide 1600 by 100 to get 16.
x=4 x=-4
Take the square root of both sides of the equation.
4\left(x^{2}+\left(\frac{3x}{4}+1\right)^{2}\right)-8\left(\frac{3x}{4}+1\right)=96
Multiply both sides of the equation by 4.
4\left(x^{2}+\left(\frac{3x}{4}\right)^{2}+2\times \frac{3x}{4}+1\right)-8\left(\frac{3x}{4}+1\right)=96
Use binomial theorem \left(a+b\right)^{2}=a^{2}+2ab+b^{2} to expand \left(\frac{3x}{4}+1\right)^{2}.
4\left(x^{2}+\frac{\left(3x\right)^{2}}{4^{2}}+2\times \frac{3x}{4}+1\right)-8\left(\frac{3x}{4}+1\right)=96
To raise \frac{3x}{4} to a power, raise both numerator and denominator to the power and then divide.
4\left(x^{2}+\frac{\left(3x\right)^{2}}{4^{2}}+\frac{3x}{2}+1\right)-8\left(\frac{3x}{4}+1\right)=96
Cancel out 4, the greatest common factor in 2 and 4.
4\left(x^{2}+\frac{\left(3x\right)^{2}}{16}+\frac{8\times 3x}{16}+1\right)-8\left(\frac{3x}{4}+1\right)=96
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of 4^{2} and 2 is 16. Multiply \frac{3x}{2} times \frac{8}{8}.
4\left(x^{2}+\frac{\left(3x\right)^{2}+8\times 3x}{16}+1\right)-8\left(\frac{3x}{4}+1\right)=96
Since \frac{\left(3x\right)^{2}}{16} and \frac{8\times 3x}{16} have the same denominator, add them by adding their numerators.
4\left(x^{2}+\frac{\left(3x\right)^{2}+24x}{16}+1\right)-8\left(\frac{3x}{4}+1\right)=96
Do the multiplications in \left(3x\right)^{2}+8\times 3x.
4\left(x^{2}+\frac{9x^{2}+24x}{16}+1\right)-8\left(\frac{3x}{4}+1\right)=96
Combine like terms in \left(3x\right)^{2}+24x.
4x^{2}+4\times \frac{9x^{2}+24x}{16}+4-8\left(\frac{3x}{4}+1\right)=96
Use the distributive property to multiply 4 by x^{2}+\frac{9x^{2}+24x}{16}+1.
4x^{2}+\frac{9x^{2}+24x}{4}+4-8\left(\frac{3x}{4}+1\right)=96
Cancel out 16, the greatest common factor in 4 and 16.
4x^{2}+\frac{9}{4}x^{2}+6x+4-8\left(\frac{3x}{4}+1\right)=96
Divide each term of 9x^{2}+24x by 4 to get \frac{9}{4}x^{2}+6x.
\frac{25}{4}x^{2}+6x+4-8\left(\frac{3x}{4}+1\right)=96
Combine 4x^{2} and \frac{9}{4}x^{2} to get \frac{25}{4}x^{2}.
\frac{25}{4}x^{2}+6x+4-8\left(\frac{3x}{4}+1\right)-96=0
Subtract 96 from both sides.
4\left(\frac{25}{4}x^{2}+6x+4-8\left(\frac{3x}{4}+1\right)\right)-384=0
Multiply both sides of the equation by 4.
16\left(\frac{25}{4}x^{2}+6x+4-8\left(\frac{3x}{4}+1\right)\right)-1536=0
Multiply both sides of the equation by 4.
16\left(\frac{25}{4}x^{2}+6x+4-8\times \frac{3x}{4}-8\right)-1536=0
Use the distributive property to multiply -8 by \frac{3x}{4}+1.
16\left(\frac{25}{4}x^{2}+6x+4-2\times 3x-8\right)-1536=0
Cancel out 4, the greatest common factor in 8 and 4.
16\left(\frac{25}{4}x^{2}+6x+4-6x-8\right)-1536=0
Multiply -2 and 3 to get -6.
16\left(\frac{25}{4}x^{2}+4-8\right)-1536=0
Combine 6x and -6x to get 0.
16\left(\frac{25}{4}x^{2}-4\right)-1536=0
Subtract 8 from 4 to get -4.
100x^{2}-64-1536=0
Use the distributive property to multiply 16 by \frac{25}{4}x^{2}-4.
100x^{2}-1600=0
Subtract 1536 from -64 to get -1600.
x=\frac{0±\sqrt{0^{2}-4\times 100\left(-1600\right)}}{2\times 100}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 100 for a, 0 for b, and -1600 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{0±\sqrt{-4\times 100\left(-1600\right)}}{2\times 100}
Square 0.
x=\frac{0±\sqrt{-400\left(-1600\right)}}{2\times 100}
Multiply -4 times 100.
x=\frac{0±\sqrt{640000}}{2\times 100}
Multiply -400 times -1600.
x=\frac{0±800}{2\times 100}
Take the square root of 640000.
x=\frac{0±800}{200}
Multiply 2 times 100.
x=4
Now solve the equation x=\frac{0±800}{200} when ± is plus. Divide 800 by 200.
x=-4
Now solve the equation x=\frac{0±800}{200} when ± is minus. Divide -800 by 200.
x=4 x=-4
The equation is now solved.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}