Solve for x
x=\frac{13}{14}\approx 0.928571429
x=-\frac{13}{14}\approx -0.928571429
Graph
Share
Copied to clipboard
x^{2}+\frac{\left(3\sqrt{3}\right)^{2}}{14^{2}}=1
To raise \frac{3\sqrt{3}}{14} to a power, raise both numerator and denominator to the power and then divide.
\frac{x^{2}\times 14^{2}}{14^{2}}+\frac{\left(3\sqrt{3}\right)^{2}}{14^{2}}=1
To add or subtract expressions, expand them to make their denominators the same. Multiply x^{2} times \frac{14^{2}}{14^{2}}.
\frac{x^{2}\times 14^{2}+\left(3\sqrt{3}\right)^{2}}{14^{2}}=1
Since \frac{x^{2}\times 14^{2}}{14^{2}} and \frac{\left(3\sqrt{3}\right)^{2}}{14^{2}} have the same denominator, add them by adding their numerators.
\frac{x^{2}\times 196+\left(3\sqrt{3}\right)^{2}}{14^{2}}=1
Calculate 14 to the power of 2 and get 196.
\frac{x^{2}\times 196+3^{2}\left(\sqrt{3}\right)^{2}}{14^{2}}=1
Expand \left(3\sqrt{3}\right)^{2}.
\frac{x^{2}\times 196+9\left(\sqrt{3}\right)^{2}}{14^{2}}=1
Calculate 3 to the power of 2 and get 9.
\frac{x^{2}\times 196+9\times 3}{14^{2}}=1
The square of \sqrt{3} is 3.
\frac{x^{2}\times 196+27}{14^{2}}=1
Multiply 9 and 3 to get 27.
\frac{x^{2}\times 196+27}{196}=1
Calculate 14 to the power of 2 and get 196.
x^{2}+\frac{27}{196}=1
Divide each term of x^{2}\times 196+27 by 196 to get x^{2}+\frac{27}{196}.
x^{2}+\frac{27}{196}-1=0
Subtract 1 from both sides.
x^{2}-\frac{169}{196}=0
Subtract 1 from \frac{27}{196} to get -\frac{169}{196}.
196x^{2}-169=0
Multiply both sides by 196.
\left(14x-13\right)\left(14x+13\right)=0
Consider 196x^{2}-169. Rewrite 196x^{2}-169 as \left(14x\right)^{2}-13^{2}. The difference of squares can be factored using the rule: a^{2}-b^{2}=\left(a-b\right)\left(a+b\right).
x=\frac{13}{14} x=-\frac{13}{14}
To find equation solutions, solve 14x-13=0 and 14x+13=0.
x^{2}+\frac{\left(3\sqrt{3}\right)^{2}}{14^{2}}=1
To raise \frac{3\sqrt{3}}{14} to a power, raise both numerator and denominator to the power and then divide.
\frac{x^{2}\times 14^{2}}{14^{2}}+\frac{\left(3\sqrt{3}\right)^{2}}{14^{2}}=1
To add or subtract expressions, expand them to make their denominators the same. Multiply x^{2} times \frac{14^{2}}{14^{2}}.
\frac{x^{2}\times 14^{2}+\left(3\sqrt{3}\right)^{2}}{14^{2}}=1
Since \frac{x^{2}\times 14^{2}}{14^{2}} and \frac{\left(3\sqrt{3}\right)^{2}}{14^{2}} have the same denominator, add them by adding their numerators.
\frac{x^{2}\times 196+\left(3\sqrt{3}\right)^{2}}{14^{2}}=1
Calculate 14 to the power of 2 and get 196.
\frac{x^{2}\times 196+3^{2}\left(\sqrt{3}\right)^{2}}{14^{2}}=1
Expand \left(3\sqrt{3}\right)^{2}.
\frac{x^{2}\times 196+9\left(\sqrt{3}\right)^{2}}{14^{2}}=1
Calculate 3 to the power of 2 and get 9.
\frac{x^{2}\times 196+9\times 3}{14^{2}}=1
The square of \sqrt{3} is 3.
\frac{x^{2}\times 196+27}{14^{2}}=1
Multiply 9 and 3 to get 27.
\frac{x^{2}\times 196+27}{196}=1
Calculate 14 to the power of 2 and get 196.
x^{2}+\frac{27}{196}=1
Divide each term of x^{2}\times 196+27 by 196 to get x^{2}+\frac{27}{196}.
x^{2}=1-\frac{27}{196}
Subtract \frac{27}{196} from both sides.
x^{2}=\frac{169}{196}
Subtract \frac{27}{196} from 1 to get \frac{169}{196}.
x=\frac{13}{14} x=-\frac{13}{14}
Take the square root of both sides of the equation.
x^{2}+\frac{\left(3\sqrt{3}\right)^{2}}{14^{2}}=1
To raise \frac{3\sqrt{3}}{14} to a power, raise both numerator and denominator to the power and then divide.
\frac{x^{2}\times 14^{2}}{14^{2}}+\frac{\left(3\sqrt{3}\right)^{2}}{14^{2}}=1
To add or subtract expressions, expand them to make their denominators the same. Multiply x^{2} times \frac{14^{2}}{14^{2}}.
\frac{x^{2}\times 14^{2}+\left(3\sqrt{3}\right)^{2}}{14^{2}}=1
Since \frac{x^{2}\times 14^{2}}{14^{2}} and \frac{\left(3\sqrt{3}\right)^{2}}{14^{2}} have the same denominator, add them by adding their numerators.
\frac{x^{2}\times 196+\left(3\sqrt{3}\right)^{2}}{14^{2}}=1
Calculate 14 to the power of 2 and get 196.
\frac{x^{2}\times 196+3^{2}\left(\sqrt{3}\right)^{2}}{14^{2}}=1
Expand \left(3\sqrt{3}\right)^{2}.
\frac{x^{2}\times 196+9\left(\sqrt{3}\right)^{2}}{14^{2}}=1
Calculate 3 to the power of 2 and get 9.
\frac{x^{2}\times 196+9\times 3}{14^{2}}=1
The square of \sqrt{3} is 3.
\frac{x^{2}\times 196+27}{14^{2}}=1
Multiply 9 and 3 to get 27.
\frac{x^{2}\times 196+27}{196}=1
Calculate 14 to the power of 2 and get 196.
x^{2}+\frac{27}{196}=1
Divide each term of x^{2}\times 196+27 by 196 to get x^{2}+\frac{27}{196}.
x^{2}+\frac{27}{196}-1=0
Subtract 1 from both sides.
x^{2}-\frac{169}{196}=0
Subtract 1 from \frac{27}{196} to get -\frac{169}{196}.
x=\frac{0±\sqrt{0^{2}-4\left(-\frac{169}{196}\right)}}{2}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 1 for a, 0 for b, and -\frac{169}{196} for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{0±\sqrt{-4\left(-\frac{169}{196}\right)}}{2}
Square 0.
x=\frac{0±\sqrt{\frac{169}{49}}}{2}
Multiply -4 times -\frac{169}{196}.
x=\frac{0±\frac{13}{7}}{2}
Take the square root of \frac{169}{49}.
x=\frac{13}{14}
Now solve the equation x=\frac{0±\frac{13}{7}}{2} when ± is plus.
x=-\frac{13}{14}
Now solve the equation x=\frac{0±\frac{13}{7}}{2} when ± is minus.
x=\frac{13}{14} x=-\frac{13}{14}
The equation is now solved.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}