Skip to main content
Solve for x
Tick mark Image
Graph

Similar Problems from Web Search

Share

x^{2}+\frac{\left(16x\right)^{2}}{9^{2}}=32^{2}
To raise \frac{16x}{9} to a power, raise both numerator and denominator to the power and then divide.
\frac{x^{2}\times 9^{2}}{9^{2}}+\frac{\left(16x\right)^{2}}{9^{2}}=32^{2}
To add or subtract expressions, expand them to make their denominators the same. Multiply x^{2} times \frac{9^{2}}{9^{2}}.
\frac{x^{2}\times 9^{2}+\left(16x\right)^{2}}{9^{2}}=32^{2}
Since \frac{x^{2}\times 9^{2}}{9^{2}} and \frac{\left(16x\right)^{2}}{9^{2}} have the same denominator, add them by adding their numerators.
\frac{81x^{2}+\left(16x\right)^{2}}{9^{2}}=32^{2}
Do the multiplications in x^{2}\times 9^{2}+\left(16x\right)^{2}.
\frac{337x^{2}}{9^{2}}=32^{2}
Combine like terms in 81x^{2}+\left(16x\right)^{2}.
\frac{337x^{2}}{9^{2}}=1024
Calculate 32 to the power of 2 and get 1024.
\frac{337x^{2}}{81}=1024
Calculate 9 to the power of 2 and get 81.
337x^{2}=1024\times 81
Multiply both sides by 81.
337x^{2}=82944
Multiply 1024 and 81 to get 82944.
x^{2}=\frac{82944}{337}
Divide both sides by 337.
x=\frac{288\sqrt{337}}{337} x=-\frac{288\sqrt{337}}{337}
Take the square root of both sides of the equation.
x^{2}+\frac{\left(16x\right)^{2}}{9^{2}}=32^{2}
To raise \frac{16x}{9} to a power, raise both numerator and denominator to the power and then divide.
\frac{x^{2}\times 9^{2}}{9^{2}}+\frac{\left(16x\right)^{2}}{9^{2}}=32^{2}
To add or subtract expressions, expand them to make their denominators the same. Multiply x^{2} times \frac{9^{2}}{9^{2}}.
\frac{x^{2}\times 9^{2}+\left(16x\right)^{2}}{9^{2}}=32^{2}
Since \frac{x^{2}\times 9^{2}}{9^{2}} and \frac{\left(16x\right)^{2}}{9^{2}} have the same denominator, add them by adding their numerators.
\frac{81x^{2}+\left(16x\right)^{2}}{9^{2}}=32^{2}
Do the multiplications in x^{2}\times 9^{2}+\left(16x\right)^{2}.
\frac{337x^{2}}{9^{2}}=32^{2}
Combine like terms in 81x^{2}+\left(16x\right)^{2}.
\frac{337x^{2}}{9^{2}}=1024
Calculate 32 to the power of 2 and get 1024.
\frac{337x^{2}}{81}=1024
Calculate 9 to the power of 2 and get 81.
\frac{337x^{2}}{81}-1024=0
Subtract 1024 from both sides.
337x^{2}-82944=0
Multiply both sides of the equation by 81.
x=\frac{0±\sqrt{0^{2}-4\times 337\left(-82944\right)}}{2\times 337}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 337 for a, 0 for b, and -82944 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{0±\sqrt{-4\times 337\left(-82944\right)}}{2\times 337}
Square 0.
x=\frac{0±\sqrt{-1348\left(-82944\right)}}{2\times 337}
Multiply -4 times 337.
x=\frac{0±\sqrt{111808512}}{2\times 337}
Multiply -1348 times -82944.
x=\frac{0±576\sqrt{337}}{2\times 337}
Take the square root of 111808512.
x=\frac{0±576\sqrt{337}}{674}
Multiply 2 times 337.
x=\frac{288\sqrt{337}}{337}
Now solve the equation x=\frac{0±576\sqrt{337}}{674} when ± is plus.
x=-\frac{288\sqrt{337}}{337}
Now solve the equation x=\frac{0±576\sqrt{337}}{674} when ± is minus.
x=\frac{288\sqrt{337}}{337} x=-\frac{288\sqrt{337}}{337}
The equation is now solved.