Solve for x
x = \frac{\sqrt{130} - \sqrt{70}}{2} \approx 1.517576993
x=\frac{\sqrt{70}-\sqrt{130}}{2}\approx -1.517576993
x=\frac{-\sqrt{70}-\sqrt{130}}{2}\approx -9.884177258
x = \frac{\sqrt{70} + \sqrt{130}}{2} \approx 9.884177258
Graph
Share
Copied to clipboard
x^{2}+\frac{15^{2}}{x^{2}}=100
To raise \frac{15}{x} to a power, raise both numerator and denominator to the power and then divide.
\frac{x^{2}x^{2}}{x^{2}}+\frac{15^{2}}{x^{2}}=100
To add or subtract expressions, expand them to make their denominators the same. Multiply x^{2} times \frac{x^{2}}{x^{2}}.
\frac{x^{2}x^{2}+15^{2}}{x^{2}}=100
Since \frac{x^{2}x^{2}}{x^{2}} and \frac{15^{2}}{x^{2}} have the same denominator, add them by adding their numerators.
\frac{x^{4}+15^{2}}{x^{2}}=100
Do the multiplications in x^{2}x^{2}+15^{2}.
\frac{x^{4}+225}{x^{2}}=100
Combine like terms in x^{4}+15^{2}.
\frac{x^{4}+225}{x^{2}}-100=0
Subtract 100 from both sides.
\frac{x^{4}+225}{x^{2}}-\frac{100x^{2}}{x^{2}}=0
To add or subtract expressions, expand them to make their denominators the same. Multiply 100 times \frac{x^{2}}{x^{2}}.
\frac{x^{4}+225-100x^{2}}{x^{2}}=0
Since \frac{x^{4}+225}{x^{2}} and \frac{100x^{2}}{x^{2}} have the same denominator, subtract them by subtracting their numerators.
x^{4}+225-100x^{2}=0
Variable x cannot be equal to 0 since division by zero is not defined. Multiply both sides of the equation by x^{2}.
t^{2}-100t+225=0
Substitute t for x^{2}.
t=\frac{-\left(-100\right)±\sqrt{\left(-100\right)^{2}-4\times 1\times 225}}{2}
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. Substitute 1 for a, -100 for b, and 225 for c in the quadratic formula.
t=\frac{100±10\sqrt{91}}{2}
Do the calculations.
t=5\sqrt{91}+50 t=50-5\sqrt{91}
Solve the equation t=\frac{100±10\sqrt{91}}{2} when ± is plus and when ± is minus.
x=\frac{\sqrt{70}+\sqrt{130}}{2} x=-\frac{\sqrt{70}+\sqrt{130}}{2} x=-\frac{\sqrt{70}-\sqrt{130}}{2} x=\frac{\sqrt{70}-\sqrt{130}}{2}
Since x=t^{2}, the solutions are obtained by evaluating x=±\sqrt{t} for each t.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}