Skip to main content
Solve for x (complex solution)
Tick mark Image
Graph

Similar Problems from Web Search

Share

x^{2}+\frac{225}{4}-15x+x^{2}=9-x-\frac{1}{2}
Use binomial theorem \left(a-b\right)^{2}=a^{2}-2ab+b^{2} to expand \left(\frac{15}{2}-x\right)^{2}.
2x^{2}+\frac{225}{4}-15x=9-x-\frac{1}{2}
Combine x^{2} and x^{2} to get 2x^{2}.
2x^{2}+\frac{225}{4}-15x=\frac{17}{2}-x
Subtract \frac{1}{2} from 9 to get \frac{17}{2}.
2x^{2}+\frac{225}{4}-15x-\frac{17}{2}=-x
Subtract \frac{17}{2} from both sides.
2x^{2}+\frac{191}{4}-15x=-x
Subtract \frac{17}{2} from \frac{225}{4} to get \frac{191}{4}.
2x^{2}+\frac{191}{4}-15x+x=0
Add x to both sides.
2x^{2}+\frac{191}{4}-14x=0
Combine -15x and x to get -14x.
2x^{2}-14x+\frac{191}{4}=0
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
x=\frac{-\left(-14\right)±\sqrt{\left(-14\right)^{2}-4\times 2\times \frac{191}{4}}}{2\times 2}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 2 for a, -14 for b, and \frac{191}{4} for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-\left(-14\right)±\sqrt{196-4\times 2\times \frac{191}{4}}}{2\times 2}
Square -14.
x=\frac{-\left(-14\right)±\sqrt{196-8\times \frac{191}{4}}}{2\times 2}
Multiply -4 times 2.
x=\frac{-\left(-14\right)±\sqrt{196-382}}{2\times 2}
Multiply -8 times \frac{191}{4}.
x=\frac{-\left(-14\right)±\sqrt{-186}}{2\times 2}
Add 196 to -382.
x=\frac{-\left(-14\right)±\sqrt{186}i}{2\times 2}
Take the square root of -186.
x=\frac{14±\sqrt{186}i}{2\times 2}
The opposite of -14 is 14.
x=\frac{14±\sqrt{186}i}{4}
Multiply 2 times 2.
x=\frac{14+\sqrt{186}i}{4}
Now solve the equation x=\frac{14±\sqrt{186}i}{4} when ± is plus. Add 14 to i\sqrt{186}.
x=\frac{\sqrt{186}i}{4}+\frac{7}{2}
Divide 14+i\sqrt{186} by 4.
x=\frac{-\sqrt{186}i+14}{4}
Now solve the equation x=\frac{14±\sqrt{186}i}{4} when ± is minus. Subtract i\sqrt{186} from 14.
x=-\frac{\sqrt{186}i}{4}+\frac{7}{2}
Divide 14-i\sqrt{186} by 4.
x=\frac{\sqrt{186}i}{4}+\frac{7}{2} x=-\frac{\sqrt{186}i}{4}+\frac{7}{2}
The equation is now solved.
x^{2}+\frac{225}{4}-15x+x^{2}=9-x-\frac{1}{2}
Use binomial theorem \left(a-b\right)^{2}=a^{2}-2ab+b^{2} to expand \left(\frac{15}{2}-x\right)^{2}.
2x^{2}+\frac{225}{4}-15x=9-x-\frac{1}{2}
Combine x^{2} and x^{2} to get 2x^{2}.
2x^{2}+\frac{225}{4}-15x=\frac{17}{2}-x
Subtract \frac{1}{2} from 9 to get \frac{17}{2}.
2x^{2}+\frac{225}{4}-15x+x=\frac{17}{2}
Add x to both sides.
2x^{2}+\frac{225}{4}-14x=\frac{17}{2}
Combine -15x and x to get -14x.
2x^{2}-14x=\frac{17}{2}-\frac{225}{4}
Subtract \frac{225}{4} from both sides.
2x^{2}-14x=-\frac{191}{4}
Subtract \frac{225}{4} from \frac{17}{2} to get -\frac{191}{4}.
\frac{2x^{2}-14x}{2}=-\frac{\frac{191}{4}}{2}
Divide both sides by 2.
x^{2}+\left(-\frac{14}{2}\right)x=-\frac{\frac{191}{4}}{2}
Dividing by 2 undoes the multiplication by 2.
x^{2}-7x=-\frac{\frac{191}{4}}{2}
Divide -14 by 2.
x^{2}-7x=-\frac{191}{8}
Divide -\frac{191}{4} by 2.
x^{2}-7x+\left(-\frac{7}{2}\right)^{2}=-\frac{191}{8}+\left(-\frac{7}{2}\right)^{2}
Divide -7, the coefficient of the x term, by 2 to get -\frac{7}{2}. Then add the square of -\frac{7}{2} to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}-7x+\frac{49}{4}=-\frac{191}{8}+\frac{49}{4}
Square -\frac{7}{2} by squaring both the numerator and the denominator of the fraction.
x^{2}-7x+\frac{49}{4}=-\frac{93}{8}
Add -\frac{191}{8} to \frac{49}{4} by finding a common denominator and adding the numerators. Then reduce the fraction to lowest terms if possible.
\left(x-\frac{7}{2}\right)^{2}=-\frac{93}{8}
Factor x^{2}-7x+\frac{49}{4}. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x-\frac{7}{2}\right)^{2}}=\sqrt{-\frac{93}{8}}
Take the square root of both sides of the equation.
x-\frac{7}{2}=\frac{\sqrt{186}i}{4} x-\frac{7}{2}=-\frac{\sqrt{186}i}{4}
Simplify.
x=\frac{\sqrt{186}i}{4}+\frac{7}{2} x=-\frac{\sqrt{186}i}{4}+\frac{7}{2}
Add \frac{7}{2} to both sides of the equation.