Skip to main content
Solve for x
Tick mark Image
Graph

Similar Problems from Web Search

Share

\sqrt{x^{2}-18}=18-x^{2}
Subtract x^{2} from both sides of the equation.
\left(\sqrt{x^{2}-18}\right)^{2}=\left(18-x^{2}\right)^{2}
Square both sides of the equation.
x^{2}-18=\left(18-x^{2}\right)^{2}
Calculate \sqrt{x^{2}-18} to the power of 2 and get x^{2}-18.
x^{2}-18=324-36x^{2}+\left(x^{2}\right)^{2}
Use binomial theorem \left(a-b\right)^{2}=a^{2}-2ab+b^{2} to expand \left(18-x^{2}\right)^{2}.
x^{2}-18=324-36x^{2}+x^{4}
To raise a power to another power, multiply the exponents. Multiply 2 and 2 to get 4.
x^{2}-18-324=-36x^{2}+x^{4}
Subtract 324 from both sides.
x^{2}-342=-36x^{2}+x^{4}
Subtract 324 from -18 to get -342.
x^{2}-342+36x^{2}=x^{4}
Add 36x^{2} to both sides.
37x^{2}-342=x^{4}
Combine x^{2} and 36x^{2} to get 37x^{2}.
37x^{2}-342-x^{4}=0
Subtract x^{4} from both sides.
-t^{2}+37t-342=0
Substitute t for x^{2}.
t=\frac{-37±\sqrt{37^{2}-4\left(-1\right)\left(-342\right)}}{-2}
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. Substitute -1 for a, 37 for b, and -342 for c in the quadratic formula.
t=\frac{-37±1}{-2}
Do the calculations.
t=18 t=19
Solve the equation t=\frac{-37±1}{-2} when ± is plus and when ± is minus.
x=3\sqrt{2} x=-3\sqrt{2} x=\sqrt{19} x=-\sqrt{19}
Since x=t^{2}, the solutions are obtained by evaluating x=±\sqrt{t} for each t.
\left(3\sqrt{2}\right)^{2}+\sqrt{\left(3\sqrt{2}\right)^{2}-18}=18
Substitute 3\sqrt{2} for x in the equation x^{2}+\sqrt{x^{2}-18}=18.
18=18
Simplify. The value x=3\sqrt{2} satisfies the equation.
\left(-3\sqrt{2}\right)^{2}+\sqrt{\left(-3\sqrt{2}\right)^{2}-18}=18
Substitute -3\sqrt{2} for x in the equation x^{2}+\sqrt{x^{2}-18}=18.
18=18
Simplify. The value x=-3\sqrt{2} satisfies the equation.
\left(\sqrt{19}\right)^{2}+\sqrt{\left(\sqrt{19}\right)^{2}-18}=18
Substitute \sqrt{19} for x in the equation x^{2}+\sqrt{x^{2}-18}=18.
20=18
Simplify. The value x=\sqrt{19} does not satisfy the equation.
\left(-\sqrt{19}\right)^{2}+\sqrt{\left(-\sqrt{19}\right)^{2}-18}=18
Substitute -\sqrt{19} for x in the equation x^{2}+\sqrt{x^{2}-18}=18.
20=18
Simplify. The value x=-\sqrt{19} does not satisfy the equation.
x=3\sqrt{2} x=-3\sqrt{2}
List all solutions of \sqrt{x^{2}-18}=18-x^{2}.