Solve for x (complex solution)
x=\frac{-\sqrt{6}+\sqrt{14}i}{2}\approx -1.224744871+1.870828693i
x=\frac{-\sqrt{14}i-\sqrt{6}}{2}\approx -1.224744871-1.870828693i
Graph
Share
Copied to clipboard
x^{2}+\sqrt{6}x+5=0
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
x=\frac{-\sqrt{6}±\sqrt{\left(\sqrt{6}\right)^{2}-4\times 5}}{2}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 1 for a, \sqrt{6} for b, and 5 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-\sqrt{6}±\sqrt{6-4\times 5}}{2}
Square \sqrt{6}.
x=\frac{-\sqrt{6}±\sqrt{6-20}}{2}
Multiply -4 times 5.
x=\frac{-\sqrt{6}±\sqrt{-14}}{2}
Add 6 to -20.
x=\frac{-\sqrt{6}±\sqrt{14}i}{2}
Take the square root of -14.
x=\frac{-\sqrt{6}+\sqrt{14}i}{2}
Now solve the equation x=\frac{-\sqrt{6}±\sqrt{14}i}{2} when ± is plus. Add -\sqrt{6} to i\sqrt{14}.
x=\frac{-\sqrt{14}i-\sqrt{6}}{2}
Now solve the equation x=\frac{-\sqrt{6}±\sqrt{14}i}{2} when ± is minus. Subtract i\sqrt{14} from -\sqrt{6}.
x=\frac{-\sqrt{6}+\sqrt{14}i}{2} x=\frac{-\sqrt{14}i-\sqrt{6}}{2}
The equation is now solved.
x^{2}+\sqrt{6}x+5=0
Quadratic equations such as this one can be solved by completing the square. In order to complete the square, the equation must first be in the form x^{2}+bx=c.
x^{2}+\sqrt{6}x+5-5=-5
Subtract 5 from both sides of the equation.
x^{2}+\sqrt{6}x=-5
Subtracting 5 from itself leaves 0.
x^{2}+\sqrt{6}x+\left(\frac{\sqrt{6}}{2}\right)^{2}=-5+\left(\frac{\sqrt{6}}{2}\right)^{2}
Divide \sqrt{6}, the coefficient of the x term, by 2 to get \frac{\sqrt{6}}{2}. Then add the square of \frac{\sqrt{6}}{2} to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}+\sqrt{6}x+\frac{3}{2}=-5+\frac{3}{2}
Square \frac{\sqrt{6}}{2}.
x^{2}+\sqrt{6}x+\frac{3}{2}=-\frac{7}{2}
Add -5 to \frac{3}{2}.
\left(x+\frac{\sqrt{6}}{2}\right)^{2}=-\frac{7}{2}
Factor x^{2}+\sqrt{6}x+\frac{3}{2}. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x+\frac{\sqrt{6}}{2}\right)^{2}}=\sqrt{-\frac{7}{2}}
Take the square root of both sides of the equation.
x+\frac{\sqrt{6}}{2}=\frac{\sqrt{14}i}{2} x+\frac{\sqrt{6}}{2}=-\frac{\sqrt{14}i}{2}
Simplify.
x=\frac{-\sqrt{6}+\sqrt{14}i}{2} x=\frac{-\sqrt{14}i-\sqrt{6}}{2}
Subtract \frac{\sqrt{6}}{2} from both sides of the equation.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}